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Eyebrow Deserves Attention: Upper Periocular Biometrics

Hoang (Mark) Nguyen1, Ajita Rattani2, Reza Derakhshani3

Abstract: Ocular biometrics is attracting exceeding attention from research community and indus-
try alike thanks to its accuracy, security, and ease of use in mobile devices, especially in the pres-
ence of occlusions such as masks worn during the COVID-19 pandemic. When considering the
extended periocular region, eyebrows have not been getting enough attention due to their perceived
low uniqueness. In this paper, we evaluate a mobile-friendly deep-learning model for eyebrow-based
user authentication. Specifically, we used a fine-tuned lightCNN model for eyebrow based user au-
thentication with promising results on a particularly challenging dataset and evaluation protocol
(open-set with simulated twins). The methods achieved 0.99 AUC and 4.3% EER in VISOB dataset
and 0.98 AUC and 5.6% EER on SiW datasets using closed-set and open-set analysis, respectively.

Keywords: Ocular biometrics, eyebrow biometrics, biometric recognition.

1 Introduction

Advances in deep learning has brought about remarkable improvement in the accuracy
and robustness of biometric systems [Su14, PVZ15, Ng17]. Biometric systems scan a
trait or modality such as face, finger or ocular region of interest in order to identify the
user requesting physical or digital access. Among ocular modalities, periocular and iris
have received much attention due to their accuracy and added security especially when
used in smartphones [Zh18, RDR19, RD17a]. Despite advances in face recognition, there
are pressing applications calling for ocular biometrics, such as users wearing face masks
for safety reasons due to the recent COVID-19 pandemic. The non-touch nature of oc-
ular biometrics adds to its utility for the aforesaid use case. However, studies have also
revealed challenges related to iris and periocular recognition, including occlusions and
image artifacts due to eyelids and cosmetic contact lenses, glasses, eye movements, and
makeup [Bh10, MRD19, RD17b, RRD20].

Expanding the periocular region, especially towards the upper region, one may consider
eyebrows and their possible utility as a biometric modality. Eyebrows, as a biometric trait,
have not been well studied despite several prior works indicating their potential [Zh18,
MRD19, JXS11]. Eyebrows may be used to supplement other ocular modalities such as
iris in cases when the eye is closed or off-axis (Figure 1). Furthermore, eyebrow recog-
nition can be achieved in RGB using the ubiquitous front-facing (selfie) mobile cameras,
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eschewing the need for dedicated near-infrared cameras and illumination necessary for
iris recognition. Due to its lower uniqueness, eyebrows are usually categorized as a soft-
biometric trait [Da11]. However, thanks to their texture and morphology consistency, at
least for short term mobile use cases, eyebrows maybe used for continuous user authenti-
cation or re-identification [MRD19, JXS11].

Moving from modalities to processing methods, deep learning based methods have brought
about significant improvement in ocular recognition. However, many prior works in [Al18]
use large neural network models, such as VGG-16 [SZ14] and ResNet [He16]. Despite ad-
vancements in mobile hardware technology, especially in inference speed, it is prudent to
use models with smaller computational footprint for lower CPU and battery usage (es-
pecially for high frequency applications), faster real-time operations, and smaller down-
load size. In this work, we employ lightCNN, a light weight convolutional neural network
which uses Max-Feature-Map activation to suppress the feature map output after every
convolutional layer in order to obtain compact (256-dimensional) but yet robust and accu-
rate feature vectors for eyebrow recognition.

Fig. 1: Scenarios where eyebrow maybe preferable over iris for user authentication.

The aim of this work is to demonstrate capabilities of an efficient mobile eyebrow-based
recognition system utilizing a single eyebrow as input for user verification under a chal-
lenging protocol including near identical eyebrows (simulated twins) and open-set evalu-
ation. The three main contributions of this work are:

1. Establishing the utility of eyebrows as a stand-alone biometric for human recogni-
tion using smartphones’ front facing cameras in presence of very challenging sam-
ples.

2. Fast and efficient end-to-end eyebrow based deep learning system including an effi-
cient feature extraction using a light-weight CNN.

3. A thorough evaluation of the aforementioned system using open and closed set pro-
tocols on VISOB [Ra16] and SiW [LJL18] datasets, captured under different light-
ing conditions, along with simulated twins.

2 Prior work

The study by Xu et al. [JXS11] was the first to compare eyebrows to face and ocular recog-
nition over a large dataset. The comparison was performed between face, eye-band, and
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full eyebrow band. The authors evaluated the performance of full eyebrow band which is
approximately 1/6 of the full face area using FRGC database under controlled and uncon-
trolled illumination settings. The study used three variants of Local Binary Patterns (LBP)
for feature extraction followed by Principal Component Analysis (PCA) for dimensional-
ity reduction. The average rank-one identification rate of the eyebrow was 31.7%.

Le et al. [LPS14] proposed an eyebrow segmentation and shape structure matching method.
They used a Local Eyebrow Active Shape Model which locates 64 landmark points on the
eyebrow. The model achieved 99.4% F-measure on NIST Multiple Biometric Grand Chal-
lenge (MBGC) dataset which consists of 200 images from 50 participants. For the identi-
fication task, the authors used two shape descriptors, inter-subject structure dissimilarities
and intra-subject asymmetry dissimilarities, to match subjects’ eyebrows. They reportedly
achieved a rank one identification rate of 85.0% on a small subset and 71.3% on a large
subset of the MBGC dataset.

Mohammad et al. [MRD19] investigated short-term eyebrow recognition in the presence
of eyeglasses using VISOB and FERET dataset. For the short term identification using eye-
brows, the authors proposed the fusion of GIST, histogram of oriented gradients (HOG),
and VGG-16 features. A Support Vector Machine (SVM) classifier was used for matching.
The best reported performance was 0.63% Equal Error Rate (EER) and 0.99 AUC using
the fusion of the aforesaid three feature descriptors of both the eyebrows.

The summary of the state-of-the-art methods is shown in Table 1. It is worth noting that
most of the existing methods used closed-set protocol/ analysis. Closed-set analysis, where
the identities in the training and testing set overlap, usually result in higher accuracy be-
cause the system better adapts to the subject-specific peculiarities in the dataset. On the
contrary, open-set evaluation identities between the training and testing set do not overlap.
To the best of our knowledge, there are no reported studies evaluating eyebrow recognition
in an open-set environment, let alone with an added (simulated) twins-matching scenario.

In order to be more relevant to real world applications at scale, the system needs to per-
form well in an open-set evaluation where identities in the test set are disjoint from those
in the training set. Furthermore, we introduce simulated identical twin samples into our
dataset, where the mirror image of users’ right eyebrows are construed as new identities
and matched against their left eyebrows, making our evaluation protocol even more chal-
lenging.

3 Proposed Method

3.1 Eyebrow Detection

The eyebrow region was segmented using Dlib [Ki09], an open source face landmark
detection library. We used the Dlib version 19.18 that used histogram of oriented gradi-
ents (HOG) along with an ensemble of regression trees to detect 68 facial landmarks such
as mouth and eye corners. We cropped the left and right eyebrow regions based on these
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Tab. 1: Summary of the Prior Work on Eyebrow Recognition.

Ref Method Performance Metrics Dataset Result
[MRD19] GIST, HOG, VGG-16, SVM Verification rate VISOB 99.72%

[JXS11]
LBP, WHT-LBP,
DCT-LBP, DFT-LBP

Rank-1 identification rate FRGC 31.7%

[LPS14] Shape-Based Descriptors Rank-1 identification rate AR 76.0%
MBGC 85.0%

[LLC13] Fast Fourier Transform Verification rate BJUT 98.12%
CFERET 89.22%

[LL07] Hidden Markov Model Verification rate In-house 92.6%
[YXL13] Sparsity Preserving Projection Verification rate In-house 92.5%

Fig. 2: Eyebrow images in SiW dataset: (a) original left eyebrow and (b) mirrored right eyebrow

landmarks. The right eyebrow crop is mirrored horizontally to synthesize a new ”twin”
subject given face’s reflective symmetry, making for a challenging case similar to biomet-
ric identification of identical twins. Besides the landmarks, Dlib also provides a bounding
box around the detected face.

3.2 Feature Extraction

We used lightCNN [WHS15] which has been widely used for face recognition. The general
architecture of lightCNN is shown in Figure 3. The model heavily applies Max-Feature-
Map (MFM) operation (see equation 1) instead of ReLu activation. This acts as feature
filter after each convolution layer. The operation takes two feature maps, eliminates the
element-wise minimum, and returns element-wise maximum. By doing so across feature
channels, only 50% of the information-bearing nodes from each layer reach the next. Con-
sequently, each layer is forced to preserve compact feature maps during training. The gen-
eral architecture is shown in Figure 3. During the training on VISOB dataset, we added a
softmax layer for classification. This layer was then removed and the remaining 256 di-
mensional output in MFM fc1 was used as the feature vector representing the input iden-
tity. Two versions of lightCNN were used in this work: a 9-layer and a 29-layer lightCNN.
The details of the two models can be found in [WHS15]. Thanks to their low dimensional
outputs and small computational footprint for inference, both the models are suitable for
mobile deployments.
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3.3 Matching

Cosine similarity is used extensively in deep-learning based biometric matchers such as
face recognition systems. As such, we used this metric to generate eyebrow match scores
between enrollment-verification feature vector pairs obtained from our lightCNN models.
The function is given below:
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Fig. 3: Architecture of the lightCNN model used in this study.

4 Experimental Evaluation

4.1 Data and Experimental Protocol

Here we used VISible light mobile Ocular Biometric (VISOB) [Ra16] and Spoofs in the
Wild (SiW) [LJL18] face anti-spoofing database to evaluate our models.

VISOB Database This database consists of eye images of about 550 healthy adults cap-
tured using three different mobile phones in three different lighting conditions. The three
smartphones used in data collection are: OPPO N1, iPhone 5s, and Galaxy Note 4. During
the data collection, the volunteers were asked to take selfie-like images during two visits
(Visit 1 and Visit 2), 2-4 weeks apart. During each visit, images were captured in two
sessions 10-15 minutes apart, and under three illumination conditions: regular office light,
dim indoors, and natural daylight. In this experiment, we only used the images from OPPO
device under office and natural lighting conditions.
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SiW Database SiW consists of up to 8 live and 20 spoof videos from 165 participants
collected at various distances, poses, illuminations, and with different facial expressions.
In our experiment, we only used live videos to harvest frames. We generated more than
100,000 images from live videos by extracting one still frame from every 10 consecutive
video frames. We chose the SiW dataset for our experiment because of two reasons: the
rather large number of participants and the variations in eyebrow resolution. Based on the
size of the detected faces’ bounding boxes as delivered by Dlib, we divided the dataset into
low and high resolution subsets. An eyebrow was deemed as high resolution if the pixel
count in the corresponding face bounding box was larger than 200k, and considered as low
resolution if such pixel count was in the 50k to 80k range.

Enrollment and Verification Data: We arranged for a total of 7 different experiments
with different enrollment and verification data divisions shown in Table 2. To maintain
consistency between comparisons, a single model (trained on VISOB visit 1, session 1,
daylight) was used across all the experiments. In VISOB experiments, identities in the
training set re-appear in testing set, thus it follows a closed-set protocol. However, all
the experiments on the SiW dataset follow an open-set protocol (disjoint training-testing
identities).

Data Processing and Experimental Protocol: During model training, single crop eye-
brow input images were resized to 144×144 then randomly cropped to 128× 128 to fit
the model input size while presenting translation variations (data augmentation). For im-
age matching in validation and testing, we resized the image to 128× 128. We trained the
models with the initial learning rate of 1e-3 for a maximum of 200 epochs and used the
weights from the epoch that yielded the best validation loss (early stopping). The momen-
tum and weight decay parameters were set to 0.9 and 10e-4, respectively.

Tab. 2: List of Experiments Conducted for Eyebrow Recognition Across Lighting, Image resolution
and Time Lapse.

Dataset Experiments Enrollment Verification
VISOB Short term (Visit 1) (a) Daylight, Session 1 Daylight, Session 2

Short term (Visit 2) (b) Daylight, Session 1 Daylight, Session 2
Long term (c) Daylight, Session 1, Visit 1 Daylight, Session 2, Visit 2

Different illumination (d) Daylight, Session 1, Visit 1 Office, Session 2, Visit 1
SiW High vs. high (e) High resolution High resolution SiW

Low vs low (f) Low resolution Low resolution SiW
Low vs. high (g) Low resolution High resolution SiW

4.2 Experimental Protocol

In this study, we reflected the right eyebrow image across face’s longitudinal median to
double the number of identities in a way that makes the comparisons quite difficult. Given
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face’s reflective symmetry in the sagittal plane, such augmented dataset is similar to that
of identical twins, a challenging case for face and eyebrow matching. Figure 2 shows
examples of (a) left eyebrow images, (b) mirrored right eyebrow image processed using
Dlib [Ki09]. Table 2 list the details of all the seven experiments conducted in this study. As
mentioned earlier, we only used VISOB data collected in session 1 of visit 1 under natural
light to train our model with 80% set for training and the remaining 20% for validation.
We evaluated the trained models in various experiments. We used Equal Error Rate (EER)
and Area Under the Curve (AUC) from ROC analysis to report classifier performance for
each of the experiment in Table 2. The letter next to each experiment in table 2 indicates
the corresponding ROC curve in the figure 4.

Fig. 4: ROC curves of our study’s 7 experiments using (1) 9-layer and (2) 29-layer lightCNN. (a):
short term verification (VISOB visit 1), (b): short term verification (VISOB visit 2), (c): long term
verification, (d): different illumination, (e): high resolution vs high resolution, (f): low resolution vs
low resolution, (g): low resolution vs high resolution. See Table 2 for details.

4.3 Results and Discussions

Fig 4 shows the ROC curves of the seven experiments we conducted using the 9 and
29 layer lightCNNs. As expected, both models yielded their best results on short term
verification (VISOB dataset). The performance for long term verification is the worst,
indicating that eyebrow is not biometrically stable over time. Cosmetic manipulation of
eyebrows may also have played a role in the performance degradation. During our three
experiments using SiW dataset, the low resolution versus low resolution outperformed
the other two configurations. This might be due to SiW motion blur issues that are better
masked in the lower resolutions.

Table 3 shows the resulting EERs [%] and AUCs (in [0,1] range). The 29-layer lightCNN
yielded better results compared the 9-layer version in all the 7 experiments, meaning that
the former extracted more discriminative features. Best results came from VISOB’s short
term verification test with the 29-layer lightCNN (EER, 4.3%, AUC, 0.990). The same net-
work provided a 13.2% EER for VISOB long-term comparison. The 29-layer lightCNN
also achieved a better EER when enrollment and verification images came from different
lighting conditions (7.9% compared to 11.4% for the 9-layer model). The best open-set re-
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Tab. 3: EERs and AUCs of all the Experiments in Table 2 using 9 and a 29-layer lightCNN models.

Model LightCNN 9 LightCNN 29
Dataset Experiment EER(%) AUC EER(%) AUC

VISOB (Closed Set) Short term (visit 1) 5.2 0.987 4.3 0.990
Short term (visit 2) 7.4 0.967 6.8 0.970

Long term 15.1 0.922 13.2 0.934
Different illumination 11.4 0.950 7.9 0.971

SiW (Open Set) High vs high resolution 9.7 0.963 8.0 0.973
Low vs low resolution 7.0 0.980 5.6 0.986
Low vs high resolution 10.3 0.960 8.2 0.973

sults (SiW dataset) show a 5.6% EER and a 0.986 AUC. Considering the especially chal-
lenging nature of our simulated identical twins data augmentation, these numbers show
promise for eyebrows as a biometric.

One important finding from the aforementioned seven experiments is the consistency of the
results across different dataset. As expected, motion blur, long term comparisons, and open
set protocol did have detrimental effects on the accuracy but to a limited and reasonable
extent; showing the robustness of the studied modality and matching methods.

5 Conclusion and Future Work

In this paper, we demonstrate the viability of an eyebrow recognition system that employs
a light-weight deep learning model and operates on selfie-like captures. We do so using
a challenging data augmentation pipeline akin to comparing identical twins, and extend
our experiments to long term, open set protocols to show the resiliency of the proposed
modality and matching method. Such non-touch ocular methods are especially important
during challenging times such as the recent COVID-19 pandemic that has rendered ubiq-
uitous face recognition systems into a hassle for large swaths of users wearing protective
face masks. Eyebrows do deserve our attention. As a part of the future work, we would
like to evaluate our pipeline with different datasets using different deep learning models
in fully open-set environment. Further, eyebrow recognition will be compared with other
periocular regions such as iris. Lastly, an adaptive system will be proposed to fuse eyebrow
with other intra-ocular regions to further enhance the performance.
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