Generating Visualizations of Enterprise Architectures using
Model Transformations

Sabine Buckl, Alexander M. Ernst, Josef Lankes,
Christian M. Schweda, André Wittenburg

{buckls, ernst, lankes, schweda, wittenbu } @in.tum.de

Abstract: Giving account to the importance of enterprise architecture (EA) modeling,
this article sketches common issues in visualization handling that we came across dur-
ing an extensive survey of the existing tool support for EA management in 2005. We
introduce the research project software cartography, in which we develop an approach
for EA modeling including a method for the automatic creation of EA models and vi-
sualizations. This approach is based on model transformations, which we use to link
the data to be visualized and their graphical representation, thereby circumventing the
error prone and time consuming task of manual creation of the visual models. A brief
overview of a prototypic implementation of this approach complements the theoretic
findings and illustrates applicability for visual modeling and documenting the EA.

1 Motivation

With the growing importance of enterprise architecture (EA) management currently expe-
rienced in research [LW04] and in practice [Jam05], methods for documenting, evaluating,
and planning the application landscape as part of the EA gain increasing attention. This is
reflected by various approaches, which try to establish and standardize languages for mod-
eling the EA, furthermore complemented by a number of vendors claiming the emerging
market of EA management tools. Nevertheless, many of these tools show common weak-
nesses, especially regarding the approach used for creating visualizations of the EA or the
application landscape, as we found out during an extensive survey [seb05] conducted by
sebis. Such visualizations, used for documenting, evaluating, and planning the application
landscape make up the focus of the research project Software Cartography, which this
paper originates from.

In this project, we discovered a large number of different visualizations for application
landscapes, which we refer to as software maps. An exemplary software map used at
one of our project partners is given in Figure 1. The figure is made illegible due to the
fact that it contains confidential information. Nevertheless, the figure shows the inherent
complexity an approach for generating visualizations of enterprise architectures has to
cope with. The software map originates from an insurance company and visualizes about
160 application systems hosted at the headquarter, which are used worldwide. The original
map is commonly used as printout in DIN A0, within presentations, and is available at the
corporate intranet.

33



i ,I: I

|
et T

||
11
TN ST RELT
i

Figure 1: Exemplary software map of an insurance company

In order to discuss the requirements an approach for the generation of visualizations of EAs
must satisfy, an anonymized software map similar to the one of the insurance company is
shown in Figure 2. This visualization shows organizational units of a fictitious department
store as rectangles, nesting the business applications hosted at the specific organizational
unit represented by smaller rectangles. No established method for the creation and main-
tenance of such visualizations yet exists. Furthermore, most of the EA management tools
show only basic capabilities in the context of automated positioning [seb05]. Within the
development of such a method the following issues have to be considered:

e The manual creation of the visualizations of the EA is an error prone and time con-
suming task, that leads to software maps containing aged data. Caused by the miss-
ing link between the present data and the visualization, no automated creation pro-
cess for the visualization is available to ensure the timeliness of the visualized data.

e The EA management tools commonly provide the user with the possibility to intro-
duce visual elements without defined semantics in the context of the visualization,
thereby effectively disconnecting the visualization from the respective data.

We subsequently detail on the topic of EA modeling, presenting an approach, comple-
mented by a prototypic tool implementation, which we regard to be suitable for addressing
these issues. Thereby, the apporach is based on a technology originating from the field of
model driven development (MDD): model transformation. This article especially focuses
on the method for creating visualizations of the EA by model transformation and provides
information, how a tool could actually implement this method. Thereby, the error prone
and labor intensive task of manual creation of these visualizations is eliminated.

The remainder of the article is structured as follows. As a starting point, software cartog-
raphy as an way to support EA modeling with visual models is presented in Section 2 as
well as an approach using model transformation to create the necessary visual models. The
following Section 3 shows the application of our approach by providing information on a
prototypic tool implementation. Section 4 emphasizes on different approaches taken in the
context of EA modeling as well as on aspects of visualization consistency. Finally, sec-

34



Munich Hamburg Garching London

Product Shipment
System (Germany)
400)

POS System
(Germany/
Hamburg) (1620)

Monetary
uuuuuuuuuuuu Transactions

Oniine Shop (100) | | Humen Reseure

POS System
(Germany/Munich)
(1600)

Customer
Complaint System
(1900)

\n\éenlﬂw Czﬂunﬂlm\ d
siem (200) stom (Great
e ¢ Hrta) (350)

W

Price Tag Printing
Systom (Germany!

ansactions stem (Germany
Hamburg) (1720)

System (Germany)
(300)

usiness Traveling Mar
P iem 00y | | o
(1800)

(800)

S ‘

Workime:

Document Maromamen | ||| reionene | || | Price Tag printn

]
System (1200)

o
Accounting Management
System (500) mich) (1700) System (1100) | | paiburg) (1620) Bl (17501

Customer Workime
" Vanatenent Felalorshp erageneny
00 Management (Great Bran
(600 (1400) System (1500) Sy 2100) i650)

Legend

(MapSymbols | [ViualzationRules | !
: [ 2 ] tocaiona | i = A hosts B (1)° and ,C (2) |
! Business Application B with Id 1 i ! i
| N |
I I

Figure 2: Exemplary software map

tion 5 provides some conclusions resulting from the taken approach and sketches aspects
of further research in this field.

2 A model transformation approach

Our approach to EA modeling uses concepts and notions originating from the field of
cartography. Maps in the context of cartography can be categorized into two different
map types: topographic maps and thematic maps [KO96]. Topographic maps mainly
deal with geographic information, whereas thematic maps show spatial information on a
topographic map, as e.g. the results of a political election. In the context of EA modeling,
visualizations resembling the buildup of thematic maps can be considered to be important,
as they can be used to visualize different aspects of the enterprise. These visualizations,
called software maps, are subject of research in our project software cartography. Aspects
in the context of EA modeling that can be used to support the documentation, planning,
and evaluating of the application landscape can be found in [MWO04]. Thereby, metrics
that point out aspects can be visualized on software maps to address specific concerns. In
our research project, we gathered different visualizations of the EA and categorized them
into three different types [Wit07]:

o A cluster map is a type of software map that uses positioning to show how objects
(e.g. applications) are grouped into larger logical units (e.g. organizational units).
Thereby, the graphical representation of the object is clustered into the the repre-
sentation of the logical unit. An example for a software map of type cluster map is
shown in Figure 2.

e A cartesian map is characterized by elements that are aligned along an x- and an
y-axis. Two prominent examples of a cartesian map exist. Firstly, the process sup-
port map, which utilizes positioning to show which business processes (y-axis) are

35



supported by which application and used at which location (x-axis). Secondly, the
time interval map, which is closely related to Gantt-like diagrams, as it uses bars
for representing the life cycle on the x-axis (representing periods of time) of objects
(e.g. applications) on the y-axis.

o A graph layout map is a map using a typical nodes-and-edges buildup, not exerting
additional restrictions on positioning to convey information. Therefore, the posi-
tioning is for example used for minimizing the numbers of lines crossing.

To support the visualization of different aspects, as e.g. technical aspects or economical
aspects on a software map [LMWOS5], the layering principle as shown in Figure 3 can be
utilized.

Figure 3: Layered architecture of a software map

The exemplary software map consists of a base map including organizational units, and
multiple layers, which are used to visualize relationships between different objects. In
Figure 3, the layers contain applications on the first layer, interconnections representing
a technical aspect on the second layer as well as measures on the third layer, visualizing
operational or economical aspects. Thereby, each layer has a reference layer to which the
elements correspond.

As described above, we pursue an approach for EA modeling based on model transforma-
tion in order to ensure the consistency between models (e.g. data in an EA management
repository) and visualizations of the EA. Therefore, a strict separation of the content to be
visualized - the semantic model - and its representation - the symbolic model - is required.
Additionally, a well-defined link between these models - the transformation - is needed.
Figure 4 shows the basic idea of the model transformation approach. Subsequently, the
individual concepts are explained in detail.

2.1 Semantic model and information model - the left side

The semantic model and the information model deal with the information describing the
EA and its structure, thereby, the different models represent different levels of abstraction,
similar to the notion of MOF (e.g. class and instance). The focal point of the semantic
model lies on the actual information objects, which describe the application landscape

36



Transformation

Semantic Model Symbolic Model

_ S —
-— - - HEEEEEEE
= =1 EE T EE =
is instance of is instance of

based on based on

Information Model Visualization Model

CEp | e a6

is instance of

is instance of

based on based on

Metamodel
e.g. Meta Object Facility (MOF) 2.0

Figure 4: Basic principle of the software cartography method

irrespective of its representation. These information objects are instances - in terms of
object orientation - of the classes of the information model, thus the information model is
the metamodel on which the semantic model is based.

To exemplify the two tiered structure of the left side, we refer to the cluster map introduced
in Section 1, i.e. the respective information about the EA contained therein. This informa-
tion can be summarized as “which location hosts which business application”. ”Munich”,
for example, which is an instance of Locat i on, hosts among others ”Online Shop (100)”,
an instance of BusinessApplication. Figure 5 shows some of the information ob-
jects, which are instances of the classes from the information model in Figure 6.

: hostedAt Munich - Locat
OnlineShop : BusinessApplication — unich : Location

: hostedAt

Monetary System (Germany) ppl

 hostedAt
Accounting System : BusinessApplication

: hostedAt
Costing System : BusinessApplication

: hostedAt
Product Shipment System (Germany) : BusinessApplication Hamburg : Location

: hostedAt
Fleet Management System : BusinessApplication

Figure 5: The semantic model containing some information objects presented in the cluster map

Location BusinessApplication
°© hosted at °©
© name: String o name : String

1 . o id: Integer

Figure 6: The corresponding information model

37



The respective information model thus contains the classes BusinessApplication
and Location, related by the association hostedAt. The attributes of the classes in
the information model are not described in detail here, as only three of them are shown
exemplarily. A more detailed description of information models and their related visual-
izations for EA management can be found in [BELT07].

2.2 Symbolic model and visualization model - the right side

In order to provide means for describing visualizations, as the cluster map shown in Fig-
ure 2, we introduce a visualization model containing elements representing graphical con-
cepts. These graphical concepts may on the one hand be map symbols, as e.g. the rectangle
and on the other hand be visualization rules. These rules exert certain demands on the po-
sitioning, size, or overall appearance of the map symbol instances, as e.g. the Nesting
rule, used in the exemplary visualization, demands that a symbol representing a business
application is fully contained in the outer symbol. Utilizing these concepts, the visualiza-
tion can be described by a symbolic model (see Figure 7), that consists of instances from
the exemplary visualization model (see Figure 8). Nevertheless, it must be noted, that
there exist more visualization rules, even in this simple example. An example is the rule
demanding the different symbols representing business applications not to intersect each
other. A complete model, able to describe visualizations as introduced above, is contained
in [ELSWO06].

intersecting
Online Shop : Rectangle Nesting intersected
intersecting
Monetary Transaction System (Germany) : Rectangle Nesting intersected Munich : Rectangle

intersecting

Accounting System : Rectangle Nesting intersected

intersecting
Costing System : Rectangle Nesting intersected

intersecting intersected

Fleet Management System : Rectangle Nesting Hamburg : Rectangle
 intersecting

Product Shipment System (Germany) : Rectangle Nesting

intersected

Figure 7: The symbolic model containing some visualization objects of cluster map

(® Rectangle inner
o x:Real
o y:Real
o widih : Real © Nesting
o height : Real
o backgorundColor : Color
o borderColor : Color 1
o text: String

Figure 8: The corresponding visualization model

38



The object-oriented visualization model, alluded to above, greatly leverages the model
transformation approach, but nevertheless is not capable of giving a strict definition for the
visualization specific semantics of the map symbols and visualization rules. Therefore, we
complement each class of the model with an expression in predicate calculus, describing
the graphical implications in an unambiguous way. These definitions, further detailed
in [ELSWO06], can be used for computing the actual visualization from a symbolic model.
Such a system might pursue different approaches for the computation. An exemplary one
is outlined in section 3.

2.3 Model transformation and metamodel - the middle

To allow an automated creation of visual models of the application landscape and to en-
sure the consistency between these models and the underlying data, a link between the
left side, representing the information and the right side, the representation, is required.
This link is created by a transformation, which translates the information objects of the
semantic model into visualization objects of the symbolic model. Selecting a transforma-
tion language specification, the concepts used in information models for EA management
and the bidirectionality of the transformation, to allow changes in the semantic model by
interacting with the visualization, should be considered. Figure 9 gives a short example of
a transformation, resembling a notation as proposed by MOF Query, View, Transformation
(QVT) [OMGO05a].

rule OrgUnit2Rectangle {
from
infoObject : Semantic.OrganizationalUnit
to
symbol : Symbolic.Rectangle (
text = infoObject.name,
backgroundColor = #CCCCCC
)

)
rule BusinessApp2Rectangle {

from
infoObject : Semantic.BusinessApplication
to
symbol : Symbolic.Rectangle (
text = infoObject.name + ”(” + infoObject.id + )~

),
rule : Symbolic.Nesting (

inner = symbol,

outer = transforming (infoObject.hostedAt)

)

Figure 9: Exemplary transformation rule set

Due to the fact that a common metamodel for the information model and the visualization
model greatly simplifies the transformation specification, such a model is subsequently in-
troduced. We extensively analyzed different EA management information models devel-
oped by industry partners in [Buc05], which pointed to the OMG’s Meta Object Facility

39



(MOF) [OMGO6] as a suitable metamodel. The MOF model contains two core packages,
Essential MOF (EMOF) and Complete MOF (CMOF), the former providing the core capa-
bilities usually associated with object orientation, the latter extending them with advanced
constructs, as e.g. constraints. However, EA management information models at our in-
dustry partners did not turn out to heavily rely on CMOF concepts, but more showed that
these advanced concepts where used inconsistently. A common sense of usage only exists
concerning the core concepts as contained in EMOF.

Based on the results of the analysis alluded to above, we regard EMOF to be sufficient
for information modeling in the field of EA, as well as a good choice in terms of an easy
mapping of models to implementation. Verifying this choice, the following section details
aspects of our prototypic tool realizing the approach outlined above.

3 SoCaTool: a tool for enterprise architecture modeling

Subsequently, we show the applicability of the model transformation approach for gen-
erating visual models of the enterprise architecture. Therefore, we provide information
on a prototypic tool, which has been developed by sebis - giving an implementation of
the approach. Prior to describing the core components of the tool and their interaction in
generating visualizations, we provide a summary of our basic assumptions, which greatly
influenced the software architecture of the tool.

With an approach strongly centered around the usage of object-oriented models and rep-
resentations thereof, a main factor is the metamodel, all these models are based on. Con-
siderations as in Section 2.2 advocate the usage of EMOF as a common metamodel for the
information model and the visualization model. An implementation of the metamodel
has therefore to be incorporated in the tool. With different implementations at hand,
we decided to rely on the implementation provided in the Eclipse Modeling Framework
(EMF) [MDG™T04]. This framework was chosen, as its metamodel, the ECore-metamodel,
can be considered to be very similar to the EMOF-metamodel'. Additionally, the EMF
provides serialization and editing related functionalities at ’no cost”, as well as an active
user and developer community. From this community various extensions to the core EMF
have arisen, as e.g. a support for OCL queries. With this initial choice made, the Eclipse
Rich Client Platform further deemed to be suitable for implementing our approach, espe-
cially with the Graphical Editor Framework (GEF) [MDG™04] providing an easy to use
system for managing and interacting with visualizations.

Based on the eclipse rich client platform, a component architecture containing four core
components has been realized - complementing the approach outlined in section 2 with an
implementation. Subsequently, these components are detailed.

Repository
The repository component is used for storing and managing object-oriented models, as
e.g. the semantic model. This component also maintains the relation between a model

'Only minor differences concerning naming and the usage of references exist.

40



and its corresponding metamodel, as e.g. the information model. Concerning the set of
functionalities offered by a repository, different types of repositories can be considered.
Whereas the simplest type only enables reading access to the models as well as creating
a completely new model from a set of objects, a more sophisticated repository would e.g.
support editing operations on the objects contained. The support for multiple users acting
on object-oriented models raises additional demands on a repository, especially concerning
transaction related issues as well as issues concerning notification about model changes.
More detailed considerations on the functionalities supported by a repository can be found
in [OMGO04].

As the prototypic implementation neither needs transaction support nor notifaction ca-
pabilities, a simple file-based repository has been chosen, thereby, every object-oriented
model is serialized as a single xml-file. Nevertheless, this repository is used via the eclipse
emf Resource-interface, which is also supported by repository projects providing more
functionalities, as e.g. the elver persistency project [GroO7].

Transformer

The transformer component is capable of interpreting visualization definitions as rules
describing the transformation from an object-oriented model to another. When analyz-
ing the transformation rules between the semantic and the symbolic model, as outlined
in section 2.3, we identified basic functional requirements, as e.g. a support for queries
on the semantic model data as well as a support for parametrizing rules. Additionally,
a framework for bidirectional transformations would greatly leverage the approach from
section 2, as it would provide means for editing semantic model data via changes to the
symbolic model. These requirements mainly focus on the expressiveness of the transfor-
mation language. Nevertheless, further requirements regarding the usage context have to
be considered. This is especially important, as the transformation rules should be easily
definable for users without “full-scale” programming knowledge, allowing users, as far
as possible, to define auto generated custom visualizations. We deem it best, to have a
graphical notation for defining these rules.

Taking into consideration languages for defining model-to-model (M2M) transformations,
especially prominent in the field of MDA, the Atlas Transformation Language (ATL), as
described in [galLI06], is at first sight an interesting candidate. Pursuing a strongly declar-
ative approach in notating the rules, and not providing a graphical notation for defining the
transformation, some of the functional requirements stated above are met by ATL. Never-
theless, ATL has only a limited support for querying concepts and, as with version 0.7, did
not provide support for parametrized rules?.

The Bidirectional Object Transformation Language (BOTL) [BMO03], pursuing a strongly
declarative approach, provides an UML-based graphical notation for defining transfor-
mation rules. Furthermore, it leverages bidirectionality regarding the rules, as far as the
operations performed during transformation do support this. Nevertheless, BOTL uses an
independent metamodel, faintly "inspired” by the EMOF metamodel, leaving out concepts
that are of importance in information modeling, as e.g. inheritance. Furthermore, querying
and external parametrization are not directly supported.

2The current version of ATL does support external parametrization.

41



Having thus ruled out two promising transformation languages from the field of MDA, we
decided to use ECore reflection and java code to realize a first prototypic implementation
of the transformer based on “hard coded” transformation implementations. While this ap-
proach comprises obvious drawbacks concerning the simplicity of visualization definition
by the user, it greatly leverages the definition of closely related visualization variants by
inheritance and the utilization of object-oriented design patterns. Additionally, the max-
imum expressiveness of java helped us to gain further insights, which language concepts
are necessary in constructing model transformation rules for defining EA management
visualizations.

Layouter

The layouter component, providing the capability to actually layout visualizations de-
scribed as symbolic models, can be considered the core component of the prototypic tool.
This component leverages the utilization of object-oriented visualization specifications
and thus enables the realization of visual modeling facilities without burdening the model
creator with the implementation of layouting algorithms. When relying on the concepts
provided by the visualization model as outlined in section 2, the layouter is capable of
calculating the positions, dimensions, and other visual parameters of symbol instances in
accordance to the visualization rule instances in the symbolic model. In performing this
calculation many different approaches can be pursued. Two of them have been explored
in-depth in the prototypic tool implementation, which are subsequently detailed.

The first approach relies on the fact, that for every symbolic model a representation as an
optimization problem can be found. This optimization problem uses the positions, dimen-
sions, and other visual parameters of the symbol instances as variables, while constraints
and target functions are derived from the visualization rule instances [ELSWO06]. Solving
the corresponding optimization problem is therefore equivalent to finding a valid layout for
the visualization. Nevertheless, as these optimization problems are often high-dimensional
as well as non-convex, specialized algorithms for solving do not commonly exist. For this
reason, the first approach employed a genetic algorithm for searching an optimal solution.
Due to the high genericity of such an algorithm, this approach is of limited performance.

The second approach takes advantage of the fact, that there exist recurring elements in
the object-oriented symbolic models, called patterns. One of these patterns could e.g. be
a clustering pattern, in which a variable number of symbol instances is demanded to be
nested into a surrounding symbol instance, with the nested instances demanded to be sep-
arated from each other. This pattern is prominently used in the visualization in Figure 2.
For such patterns specialized layouting algorithms can be found, which incorporate the
specifics of the pattern to provide superior layouting performance. A layouter pursuing
this approach has been implemented as component in the tool (see [Lau07]), performing
significantly better as the genetic algorithm. Nevertheless, the layouter is limited concern-
ing the variety of symbolic models, which can be addressed, although the most prominent
types of visualizations as outlined in section 2 can be layouted.

Renderer

The renderer component is used to present a layouted symbolic model in a specific output
format. Concerning the format especially the PDF and the scalable vector graphics (SVG)
format are of interest due to the inherent or potential support for layering and their vector

42



graphic nature. Supplementary, a renderer for direct screen output in the tool can be im-
plemented, with additional functionalities of interest, as the option to support interactions
with the rendered visualizations, e.g. via moving symbols.

In the prototypic implementation a renderer for static visualizations on screen has been
implemented using the eclipse Graphical Editor Framework (GEF). The output of this
renderer in the graphical user interfaces of the tool is shown in Figure 10, displaying an
exemplary software map of type cartesian map as outlined in section 2.

Figure 10: The GUI of the prototypic tool implementation

4 Related Work

With an approach for visual modeling presented above, the following section links to re-
lated work from the area of software engineering and EA modeling as well as issues re-
garding consistency of visual models.

In the field of software engineering, the unified modeling language (UML) [OMGO5c,
OMGO5b] provides the common sense for modeling single software systems, which is
lacking in the field of enterprise architecture modeling. Therefore, the attempt of trans-
ferring the concepts and notations of UML to EA modeling could be undertaken. Never-
theless, the specific concerns of this area of modeling are not well supported by UML, as
e.g. concepts like business applications or business processes are not known. While these
concepts could be introduced via UML profiles, specific diagramming semantics are not
easily realizable using the concepts of UML, effectively ruling out the unified modeling
language as a language for EA modeling. This fact is also reflected by the variety of dif-
ferent approaches for enterprise architecture modeling regarding languages, methods, and
tools, which can be found in the academic community.

One approach is outlined in [vdTLtD*04] and specially focuses on a formal way of defin-

43



ing visualizations of the application landscape. This approach relies on the concept of
signatures to establish a well-defined relation between the visualization and the underly-
ing model of the enterprise architecture. While this approach also considers aspects of
interest in the context of visualizations, e.g. relative positioning, no simple to use nota-
tion for a model describing the visualizations is provided. Further the approach does not
provide an executable way for creating visualizations from the information.

Regarding the absence of a state of the art, [Fra02] suggests another approach to enter-
prise architecture modeling, emphasizing the necessity to support different views on the
enterprise. These views use different special purpose modeling languages to meet the
concerns of the different stakeholders. These languages are defined in metamodels, which
correspond to a common meta-metamodel to support integration. Nevertheless, as the ap-
proach is more focused on the provision of an integrated meta-metamodel for the different
languages, it does not provide a method for generating the required views of the EA. The
approach presented in section 2 can been seen as supportive in this context, for realiz-
ing tool support for the special purpose modeling languages and their visual models, as
outlined above.

An approach centered around an EA metamodel (information model in our terms) can be
found in [BWO05]. The models contains over 50 classes and thus spanns various aspects of
interest in EA modeling. Additionally, this information model is complemented by means
for structuring, which can be considered very helpful in reducing the inherent complexity
of the modeling subject. Nevertheless, with the emphasis of the approach on the infor-
mation model, aspects of visual models and their creation are not addressed in the article.
Again, we see the approache presented in section 2 as a valuable contribution in the con-
text, actually providing a way for supporting visual modeling based on the EA metamodel
provided in [BWOS5].

Regarding the inconsistency issue between visualizations and the underlying data, an ap-
proach to ensure visualization consistency is pursued in [DV02] and especially focuses on
aspects of executability. In order to provide an “open visualization framework applica-
ble to metamodel based modeling languages” the issue is approached from the direction
of visual languages (visualization models). Pointing out, that many domain specific vi-
sualization environments exist, the approach quickly calls to XML as a lingua franca for
representing the concepts of these languages. Furthermore, information to be visualized
is also serialized as XML, such that concepts of transforming between XML document,
as e.g. XSLT can be used for visualizing the information. Nevertheless, the article does
not encompass a visual language suitable for expressing the aspects of relative position-
ing, as the application presented in therein concerns petri-nets and their representation as
nodes-and-edges.

Targeting EA modeling, an approach using object-oriented models for describing the EA
and the visualizations is given in [SAtDL04]. These models are, similar to the approach
presented in section 2 connected via transformations. Nevertheless, these transformations
are limited to object-to-object transformations, while the links (instances of associations)
are not taken into consideration - again leaving out an aspect crucial for modeling the
EA. Furthermore, a language for describing the visualizations as outlined in section 2.2,
especially concerning relative positioning, is not provided.

44



5 Outlook

In this article, we emphasized on the importance of models of the enterprise architecture.
As we outlined, various approaches and information models for this modeling task ex-
ist, with no model or approach being prominent and all-embracing. Complementarily, we
outlined the importance of visual models of the enterprise architecture to make the infor-
mation about the EA perceivable. With the absence of the one information model for the
EA and the need for visual models obviously existing, the approach presented in Section 2
targets to bridge this gap. Utilizing model transformation concepts and providing a flex-
ible model for describing visualizations, our approach can be seen as an extension to the
information modeling approaches as presented in Section 4.

The applicability of the model transformation approach is shown in Section 3 by providing
details of a prototypic tool implementation, which is able to ensure consistency between
the data modeled according to an arbitrary information model and the visualization repre-
senting this data. Nevertheless, the prototypic implementation can be seen as a first step
towards a visual modeling tool supporting a variety of information models. Concerning
the modeling capabilities further extension for the e.g. for semantic-preserving editing
of the visualizations as well as for propagating semantic changes in the visualization to
the underlying semantic model have to be explored and currently subjected to research at
sebis.

References

[BEL'07] S. Buckl, A.M. Ernst, J. Lankes, K. Schneider, and C.M. Schweda. A Pattern based
Approach for constructing Enterprise Architecture Management Information Mod-
els. In A. Oberweis, C. Weinhardt, H. Gimpel, A. Koschmider, V. Pankratius, and
Schnizler, editors, Wirtschaftsinformatik 2007, pages 145-162, Karlsruhe, Germany,
2007. universititsverlag karlsruhe.

[BMO3] P. Braun and F. Marschall. BOTL - The Bidirectional Object Oriented Transforma-
tion Language. http://wwwbib.informatik.tu-muenchen.de/infberichte/2003/TUM-
10307.pdf (cited 2007-01-26), 2003.

[BucO5] S. Buckl. Modell-basierte Transformationen von Informationsmodellen zum Man-
agement von Anwendungslandschaften. Diploma thesis, Fakultit fiir Informatik,
Technische Universitiat Miinchen, 2005.

[BWO5] C. Braun and R. Winter. MA Comprehensive Enterprise Architecture Metamodel
and Its Implementation Using a Metamodeling Platform. In Enterprise Modelling
and Information System Architectures (EMISA), pages 64-79, 2005.

[DVO02] P. Domokos and D. Varré. An Open Visualization Framework for Metamodel-Based
Modeling Languages. Electronic Notes in Theoretical Computer Science, 72(2),
2002.

[ELSWO06] A. Ernst, J. Lankes, C.M. Schweda, and A. Wittenburg. Using Model Transfor-
mation for Generating Visualizations from Repository Contents - An Application to
Software Cartography. Technical report, Technische Universitit Miinchen, Chair for
Informatics 19 (sebis), Munich, 2006.

45



[Fra02]

[galI06]
[Gro07]
[JamO5]
[KO96]

[Lau07]

[LMWO5]

[LWO04]

[MDG'04]

[MWO04]
[OMGO04]
[OMGO5a]

[OMGO5b]
[OMGO5c¢]

[OMGO6]

[SAtDLO4]

[seb05]
[vdTLtD " 04]

[Wit07]

U. Frank. Multi-Perspective Enterprise Modeling (MEMO) - Conceptual Framework
and Modeling Languages. In Proceedings of the 35th Annual Hawaii International
Conference on System Sciences 35, pages 1258-1267, 2002.

ATLAS group at LINA & INRIA. ATL: Atlas Transformation Language, 2006.
The Elver Group. Elver Pesistency, 2007.
G. James. Magic Quadrant for Enterprise Architecture Tools, 4Q04, 2005.

M. J. Kraak and F. Ormeling. Cartography: Visualization of Spatial Data. Addison
Wesley Longman, 1996.

S. Lauschke. Automatische Generierung von Softwarekarten: Entwicklung eines
Ansatzes zum Layout deklarativ beschriebener Visualisierungen. Master’s thesis,
Fakultit fiir Informatik, Technische Universitit Miinchen, 2007.

J. Lankes, M. Matthes, and A. Wittenburg. Softwarekartographie: Systematische
Darstellung von Anwendungslandschaften. In Wirtschaftsinformatik 2005, Bamberg,
Germany, 2005.

K. Langenberg and A. Wegmann. Enterprise Architecture: What Aspects is Current
Research Targeting? Technical report, Ecole Polytechnique Fédérale de Lausanne,
Laboratory of Systemic Modeling, 2004.

B. Moore, D. Dean, A. Gerber, G. Wagenknecht, and P. Vanderheyden. Eclipse De-
velopment using the Graphical Editing Framework and the Eclipse Modeling Frame-
work. http://www.redbooks.ibm.com/redbooks/pdfs/sg246302.pdf (cited 2007-07-
04), 2004.

F. Matthes and A. Wittenburg. Softwarekarten zur Visualisierung von Anwendungs-
landschaften und ihrer Aspekte. Technical report, Technische Universitit Miinchen,
Chair for Informatics 19 (sebis), Munich, 2004.

OMG. MOF 2.0 Facility and Object Lifecycle Specification, ad/2004-04-02, 2004.

OMG. Revised Submission for MOF 2.0 Query/View/Transformation (ptc/05-11-
01), 2005.

OMG. UML 2.0 Infrastructure Specification (formal/05-07-05), 2005.

OMG. Unified Modeling Language: Superstructure, version 2.0 (formal/05-07-04),
2005.

OMG. Meta Object Facility (MOF) Core Specification, version 2.0 (formal/06-01-
01), 2006.

M.W.A. Steen, D.H. Akehurst, H. ter Doest, and M.M. Lankhorst. Supporting
Viewpoint-Oriented Enterprise Architecture. Technical report, Information Centre
of Telematica Instituut AND University of Kent, Enschede, Netherlands & Canter-
bury, United Kingdom, 2004.

sebis. Enterprise Architecture Management Tool Survey 2005, 2005.

L. van der Torre, M.M. Lankhorst, H. ter Doest, J. Campschroer, and F. Arbab. Land-
scape Maps for Enterprise Architectures. Technical report, Information Centre of
Telematica Instituut, Enschede, Netherlands, 2004.

A. Wittenburg. Softwarekartographie: Modelle und Methoden zur systematischen
Visualisierung von Anwendungslandschaften. Phd thesis (in publication), Fakultit
fiir Informatik, Technische Universitit Miinchen, 2007.

46





