An Activity Completion Duration based Checkpoint
Selection Strategy for Dynamic Verification of Fixed-time
Constraints in Grid Workflow Systems

Jinjun Chen, Yun Yang

CICEC — Centre for Internet Computing and E-Commerce
Faculty of Information and Communication Technologies
Swinburne University of Technology
PO Box 218, Hawthorn, Melbourne, Australia 3122
jchen@ict.swin.edu.au
yyang@ict.swin.edu.au

Abstract: In grid workflow systems, to verify fixed-time constraints efficiently at
the run-time execution stage, some checkpoints are often selected so that we only
need to conduct the fixed-time constraint verification at such checkpoints rather
than at all activity points. However, the existing typical checkpoint selection
strategies are inefficient and/or ineffective because they may incur some
unnecessary verification by selecting some unnecessary checkpoints or omit some
necessary verification by omitting some necessary checkpoints. Therefore, in this
paper, based on the run-time activity completion duration, we develop a new
checkpoint selection strategy that is more efficient and effective than the existing
typical checkpoint selection strategies. The final comparison and quantitative
evaluation further demonstrate this point.

1 Introduction

Grid workflow systems, which are evoking a high degree of interest aim to support
modelling, redesign and execution of large-scale sophisticated e-science and e-business
processes using the grid computing approach to enable the coordinated use of numerous
distributed and heterogeneous resources [Ab04, Ca03, Cy04, Fo02]. In Open Grid
Services Architecture (OGSA), a grid workflow can be defined as the automation of a
Grid process, in whole or part, during which documents, information or data are passed
from one grid service to another for action, according to a set of procedural rules [Am04,
Cy04, CYO05, Hu03]. Conceptually, a grid workflow is a collection of activities, and the
dependencies between activities that define their execution orders and form four basic
control structures: sequential, parallel, selective and iterative [Cy04]. These activities are
implemented and executed by corresponding grid services. The whole working process
of a grid workflow system can be divided into three stages: build-time, run-time
instantiation and run-time execution. At the build-time stage, grid workflow
specifications are defined by deploying some grid workflow definition languages such as

Grid Services Flow Language (GSFL), Abstract Grid Workflow Language (AGWL),
Service Workflow Language (SWFL) and Grid Workflow Execution Language (GWEL)
[Cy04, FPV04, Hu03, KWLO02]. At the run-time instantiation stage, grid workflow
instances are created, and especially grid services specified in the build-time definition
documents are discovered by an instantiation service that is a high-level grid service
[Cy04, KWLO02]. At the run-time execution stage, the grid workflow instances are
executed, and the execution is coordinated between grid services by the grid workflow
engine that itself is a high-level grid service, hence automatically grid aware [Cy04,
Hu03, KWLO02].

To control the temporal correctness of the grid workflow specification and execution,
fixed-time constraints are often set [CY04, EPR99, MO99]. A fixed-time constraint at an
activity is an absolute time value by which the activity must be completed. For example,
a climate modelling grid workflow must be finished by the scheduled time [Ab04], say
9:00pm, so that the weather forecasting can be broadcasted at a later time, say 10:30pm,
on the same day. Here, 9pm is a fixed-time constraint.

After the fixed-time constraints are set, the temporal verification is conducted to check
whether they are all consistent. At the build-time and run-time instantiation stages, the
temporal verification is static because of no any specific execution times. For each fixed-
time constraint, we conduct its verification once only with the consideration of all
covered activities. Therefore, we need not decide at which activities we should conduct
the fixed-time constraint verification. At the run-time execution stage, the activity
completion duration is uncertain, which may affect the consistency of a fixed-time
constraint. Hence, we may need to verify a fixed-time constraint many times at different
activities. However, conducting the verification at every activity is not efficient because
we may not have to do so at some activities such as those activities which can be
completed within the allowed time interval. Therefore, a question is prompted which is:
“where should we conduct the fixed-time constraint verification?”. The activities at
which we conduct the fixed-time constraint verification are called checkpoints [CYC04,
De03, M0O99, ZCP01]. Correspondingly, a research field comes into the picture whose
topic is checkpoint selection strategies [CYCO04, De03, MO99, ZCP01].

So far, some typical checkpoint selection strategies have been proposed. [De03] takes
every activity as a checkpoint. We denote this strategy as CSS; (CSS: Checkpoint
Selection Strategy). [ZCPO1] sets checkpoints at the start time and end time of each
activity and each flow. We denote this strategy as CSS,. [MO99] takes the start point of a
workflow instance as a checkpoint and adds a checkpoint after each decision activity is
executed. We denote this strategy as CSS;. [MO99] also mentions another checkpoint
selection strategy: user-defined checkpoints. We denote this strategy as CSS,. [CYCO04],
as our previous work, proposes a checkpoint selection strategy based on the run-time
activity completion duration. We denote this strategy as CSSs;. However, since the
activity completion duration is uncertain, we may not have to conduct the fixed-time
constraint verification at some activities. Therefore, CSS; and CSS, are inefficient.
Similarly, CSS; and CSS, are inefficient either as we may not have to conduct the fixed-
time constraint verification at the start activity or the decision activities or the user-
defined activities. In addition, CSS; and CSS, are ineffective because we will omit the

297

verification which should be conducted at some other activities. As to CSSs, in [CYC04],
a fixed-time constraint only has two states: CC (Conventional Consistency) and CI
(Conventional Inconsistency) and CSSs is based on it. However, according to the
analysis in [CY05b], in the grid workflow systems, a fixed-time constraint should have
four states: SC (Strong Consistency), WC (Weak Consistency), WI (Weak
Inconsistency) and SI (Strong Inconsistency). CC corresponds to SC and CI is divided
into WC, WI and SI. Based on CSS;s, we can judge whether we should take an activity as
a checkpoint for CC or CI verification. However, since CSS;s is only based on CC and
CI, we are not able to further consider whether we should take the activity as a
checkpoint for the verification of WC, WI or SI. As a result, the corresponding
verification is omitted. Hence, CSS; is ineffective either.

Regarding the above limitations of the existing typical checkpoint selection strategies, in
this paper, we develop a new checkpoint selection strategy. The strategy is based on the
relationship between the run-time activity completion duration and the four states: SC,
WC, WI and SI, and can select the checkpoints dynamically along the grid workflow
execution. The final comparison and quantitative evaluation further show that our
strategy is more efficient and effective than the existing typical ones.

The remainder of the paper is organised as follows. Section 2 describes a timed grid
workflow representation. Section 3 details our checkpoint selection strategy. Section 4
further shows the benefits of our strategy through a comparison and quantitative
evaluation. Section 5 concludes our contributions and points out the future work.

2 Timed Grid Workflow Representation

Based on the directed graph concept, a grid workflow can be represented by a grid
workflow graph, where nodes correspond to activities and edges correspond to
dependencies between activities, called flows [CM00, EPR99]. Here we assume that the
grid workflow is well structured. As far as the time is concerned, an activity is similar to
a flow. Therefore, we use term “activity” to refer to the real activity as well as the flow.
Based on [CY04, CY05a, EPR99, MO99], we denote the i activity of a grid workflow
as a;, the expected time from which the specification of the grid workflow gw will
become effective as Cie(gw). For each a;, we denote its maximum duration, minimum
duration, average duration, run-time start time, run-time end time and run-time
completion duration as D(a;), d(a;), Ave(a;), S(a;), E(a;) and Rcd(a;) respectively. Red(a;)
covers the queuing delay, synchronisation delay, network latency and so on caused at a;.
If there is a fixed-time constraint at a;, we denote it as F'7C(a;) and its value as fiv(a,;). If
there is a path from a;to g, (72i), we denote the maximum duration, minimum duration,
average duration, run-time real completion duration between them as D(a; a)), d(a; a)),
Ave(a, a) and Red(a, ay) respectively [EPR99, MO99]. Normally we have
d(a)<Ave(a;)<D(a;) and d(a; a)<Ave(a; a;)<D(a; a;). For convenience, we consider one
execution path in the grid workflow without losing generality. As to a selective or
parallel structure, for each branch, it is an execution path. For an iterative structure, from
the start time to the end time, it is still an execution path. Therefore, for the
selective/parallel/iterative structure, we can also apply the results achieved from one

298

execution path. Hence, from a;to a;, D(a; ay), d(a; a;) and Ave(a; a;) is equal to the sum
of activity maximum durations, minimum durations and average durations respectively.

Besides the above time attributes, in [CY05b], we have defined the four consistency
states: SC, WC, WI and SI. Because we will develop a new checkpoint selection strategy
based on them, we should present a summary of their definitions. In addition, for the
comparison between CSSs and our strategy in Section 4, we also need to summarise the
definitions of CC and CI. However, since the checkpoint concept is related to the run-
time execution stage, we only summarise the definitions of the stage below. The
definitions of other stages and detailed discussion can be referred to [CYC04, CY05b].

Definition 1. At the run-time execution stage, at checkpoint a, which is either before or
at a;, FTC(a;) is said to be of SC when Red(a,, a,)+D(a,,, a)< fiv(a)-S(a;).

Definition 2. At the run-time execution stage, at checkpoint a, which is either before or
at a;, FTC(ay) is said to be of WC when Rcd(a;, a,) + Ave(a,.;, a) < ftv(a)-S(a;) <
Red(a;, a,)+D(a,.;, ay).

Definition 3. At the run-time execution stage, at checkpoint a, which is either before or
at a;, FTC(a)) is said to be of WI when Rcd(a,, a,) + d(a,.;, a;) < fiv(a)-S(a;) < Rcd(a,,
a,) + Ave(ayy;, ay),

Definition 4. At the run-time execution stage, at checkpoint a, which is either before or
at a; (p<i), FTC(a;) is said to be of SI when fiv(a;))-S(a,)<Rcd(a,, a,)+d(a,.; a).

Definition 5. At the run-time execution stage, at checkpoint a, which is either before or
at a;, FTC(a;) is said to be of CC when Red(a,, a,)+D(a,,;, a) < fiv(a)-S(a,).

Definition 6. At the run-time execution stage, at checkpoint a, which is either before or
at a;, FTC(a;) is said to be of CI when fiv(a;)-S(a;) < Rcd(a,, a,)+ D(a,.,, a;)

For clarity, we further depict SC, WC, WI, SI, CC and CI in Figure 1.

- = =3 : The slot does not irclude the dividing peint (DP)
& The slat includes the dividing point (DP)
DpP
CC - 3
Bl —=semeaeeaa A Rodia, a)+Dfa . a,
Jivfa)-Sta,) < Redia,, a)+ D, a) == ftifa)-Say
Redia, a)+ T (time)
Dfa)
Dp nDp np £
- W] === E k—— sC 3
= 51 -=—-3 Redfa, a) + dfa,, ,a) WD i A Redfa, a.)t Dfa, . a)
<=fiv(@)-5(a,) < Redla, a)| Redfa, a, +Ave(a,, . a) ==fiva)-Sta,)
fhfa)-Sia) = Fdvefa,, ,a) _Hr::rr.ﬂ-.\frrl..ﬂ R('fffﬁf. a)
Redfa, a)rda . a V Dfa . a) "
f L - Ls pt ¥
Redia, a)+ Redia, a)+ Redia, a)+ o
dfa,, . a) Avefa,, . a) Da,,,,. "'j T ftirwe)

Figure 1: Definitions of SC, WC, WI and SI vs definitions of CC and CI at run-time execution
stage

299

3 A New Checkpoint Selection Strategy

According to [CYO05b, HA00], WI and SI will be adjusted to SC or WC by the
corresponding exception handling. Therefore, along the grid workflow execution, at an
activity point, before the execution of the activity, all fixed-time constraints will be of
either SC or WC. However, after the execution of the activity, the uncertain activity
completion duration may affect their consistency. Therefore, we now firstly discuss the
relationship between the activity completion duration and SC, WC, WI & SI. Then, we
present our checkpoint selection strategy based on the relationship.

3.1 Relationship between Activity Completion Duration and SC, WC, WI & SI

At the run-time execution stage, at activity point a,, its completion duration is Red(ay,).
We discuss its relationship with SC, WC, WI and SI by deriving some theorems that will
form the basis for presenting our checkpoint selection strategy.

Theorem 1. At activity point a,, if D(a,) < Rcd(a,), 1) all previous WC fixed-time
constraints cannot be of SC and 2) may be of WC, WI or SI; and 3) previous SC fixed-
time constraints may be of SC, WC, WI or SI.

Proof: 1) Suppose FTC(a,) is of WC before the execution of a, (p<m), according to
Definition 2, we have fiv(a,)-S(a;) < Rcd(a,, a,.;)+D(a, a,). If D(a,) < Rcd(a,), then,
we have: fiv(a,)-S(a,;) < Rcd(a;, a,,)+D(a, a,) = Rcd(a;, a,;)+ D(a,)+D(a,.; a,) <
Rcd(a,, a,.1)+ Red(a,)+D(a,), a,,) = Red(ay, ay)+D(ay,;, a,). Hence, we have:

Jv(a,)-S(a;) < Red(ay, a,)+D(ay.,, a,,) @
However, for FTC(a,,) to be of SC, we must ensure (2) below holds.
Red(ay, a,)+D(ay.;, ay) < fiv(a,)-S(a;) @

Obviously, (2) does not hold. Hence, FTC(a,,) cannot be of SC after a,’s execution.

2) From D(a,) < Rcd(ay), we have: Rcd(a,, a,.;) + Ave(a,, a,) = Rcd(a;, a,.;) + Ave(a,) +
Ave(a,., a,) < Rcd(a;, a,;) + D(a,) + Ave(a,.;, a,) < Rcd(a;, a,;) + Rcd(a,) +
Ave(ay.,, a,) = Rcd(a,, a,) + Ave(a,.,;, a,). Hence, we have:

Rcd(ay, a,.;) + Ave(a, a,,) < Rcd(a,, ay) + Ave(a,.;, a,) (3)
Meanwhile, because FTC(a,,) is previously of WC, we have:

Red(ay, a,.;) + Ave(a, a,,) < fiv(a,)-S(a,) 4)
However, from (3) and (4), we can not judge whether (5) below holds.

Red(ay, ay) + Ave(a,.,, ay,) < fiv(a,)-S(a;) ®)

If (5) holds, FTC(a,,) is of WC again. However, depending on specific Red(a,), (5) may
or may not hold. Similarly, we may or may not have Red(a,, a,) + d(a,.;, a,) < fiv(a,)-
S(a,) < Rcd(a,, a,) + Ave(a,.,, a,), and we also may or may not have fiv(a,)-S(a,) <
Rcd(a;, ap)+d(a,.;, a,). Therefore, according to Definitions 2, 3 and 4, depending on
specific Red(a,), FTC(a,,) may be of WC, WI or SI.

3) Suppose FTC(a,) is of SC before the execution of g, (p<n), according to Definition 1,
we have:

300

Rcd(ay, a,.;)+D(a, a,)<ftv(a,)-S(a;) (6)
From D(a,) < Rcd(a,), we have: Rcd(a;, a,.;) + D(a, a,) = Rcd(a;, a,)+ D(a,) +
D(ay:y, a,) < Rcd(a;, ay.;)+ Red(a,) + D(a,.;, a,) = Red(a;, a,) + D(ay.;, a,). Hence, we
have:

Red(ay, a,.;) + D(a,, a,) <Rcd(a;, a,) + D(a,.,, a,) ()
However, from (6) and (7), we can not judge whether (8) below holds.
RCd(CZ], ap) + D(ap+1’ an) SﬁV(an)-S(CII) ®

If (8) holds, FTC(a,) is of SC again. However, depending on specific Red(a,), (8) may or
may not hold. Similarly, we may or may not have Rcd(a;, a,) + Ave(a,.; a) < fiv(ay)-
S(a,) < Rcd(a,, a,)+D(a,.,, a;) or Red(a,, a,) + d(a,.;, a;) < fiv(ay)-S(a;) < Red(a,, a,) +
Ave(ay:;, a) or fiv(a)-S(a;) < Rcd(a;, ay)td(a,.; a;). Therefore, according to
Definitions 1, 2, 3 and 4, depending on specific Rcd(a,), after the execution of a,,
FTC(a,) may be of SC, WC, WI or SI.

In overall terms, the theorem holds.]

Theorem 2. At activity point a,, if Red(a,) < D(a,), 1) all previous SC fixed-time
constraints are still of SC; and 2) previous WC fixed-time constraints may be of SC,
WC, WI or SI.

Proof: 1) Suppose FTC(a,) is of SC before the execution of g, (p<n), according to
Definition 1, we have Red(a,, ay.;) + D(a,, a,)<ftv(a,)-S(a)). If Red(a,) < D(a,), then we
have: Rcd(a;, a,)+D(a,.;, a,)= Rcd(a;, a,.;)+Rcd(a,)+D(a,.;, a,) < Rcd(a;, a,;) +
D(a,)+D(ay.,, a,) = Red(a,, a,.;)+D(a, a,) < ftv(a,)-S(a;). Hence, we have:

Rcd(a,, a,)+D(a,,, a,) < fiv(a,)-S(a;) 9
According to Definition 1, F7TC(a,) is still of SC after the execution of a,,.

2) The proof is similar to 3) of Theorem 1 and consequently is omitted.
In overall terms, the theorem holds. ||

Theorem 3. At activity point a,, if Red(a,) < Ave(a,), 1) all previous SC fixed-time
constraints are still of SC; and 2) all previous WC fixed-time constraints are of either
WC or SC; and 3) if they are still of WC, the status has been changed for better.

Proof: 1) The proof is similar to 1) of Theorem 2 and consequently is omitted.

2) Suppose FTC(a,,) is of WC before the execution of a, (p<m), according to Definition
2, we have:

Rcd(ay, a,.;) + Ave(a,, a,,) < fiv(a,)-S(a;) < Rcd(a,, a,.))+D(a, a,) 10
If Red(a,) < Ave(a,), then we have: Red(a,, a,) + Ave(a,,,, a,) = Red(a,, a,.;) + Red(ay)
+ Ave(ay,y,, a,) < Red(a,, ay.;) + Ave(a,) + Ave(a,.,, a,) = Rcd(a,, a,.;) + Ave(a,, a,) <
ftv(a,)-S(a;). Hence, we have:

Red(ay, a,) + Ave(a,.,, a,) < ftv(a,)-S(a,) n

In addition, we also have: Red(a;, ay)+D(ay.;, a,) = Rcd(a,, a,.;)+Rcd(a,)+D(a, a,) <
Rcd(a;, a,.;)+ Ave(a,)+D(a, a,) < Rcd(a,, a,,)+D(a,)+D(a, a,) = Rcd(a;, a,;) +
D(ay, a,,). Hence, we have:

301

Rcd(a;, ay)+D(a,.,, a,) < Red(a,, a,.;)+D(a, a,) 12
However, from (0), () and (2 that we only have, we cannot judge whether (13) or (4
holds.
Jfiv(a,)-S(a;) < Red(a,, a,)+D(ay.,, a,) ((8)
Red(a,, a,)+D(ay.,, ay) < ftv(a,)-S(a;) 14
In fact, depending on how much Red(a,,) is less than Ave(a,), (9 or (4 may or may not
hold. If (13) holds, then, with (1), we have:
Rcd(ay, a,) + Ave(a,.,, ay) < ftv(a,)-S(a,) < Red(a,, a,)+D(a,., a,) 19
According to Definition 2, (5 means that FTC(a,,) is of WC. If (4) holds, according to
Definition 1, FTC(a,,) is already switched to be of SC after the execution of a,,.

3) If Red(a,) < Ave(a,), then we have: Rcd(a;, a,) + Ave(a,.; a,) = Rcd(a,;, ay,;) +
Rcd(a,) + Ave(ay,,, a,) < Red(ay, a,.;) + Ave(a,) + Ave(a,.;, a,) = Red(a,, a,.;) + Ave(a,
a,,). Therefore, we have:
Rcd(a, a,) + Ave(a,,, a,) < Rcd(a,, a,.;) + Ave(a,, a,,) (16)
Correspondingly, we have:
[ftv(ay)-S(a,)-[Red(a,, ay.))+Ave(ay, a,)]<[fiv(a,)-S(a;)]-Rcd(a;, a,)+Ave(ay,;, ay)]
an
(I means that, after the execution of a,,, FTC(a,,) is closer to SC than before. Therefore,
the status of F'7C(a,,) has been changed for better.

In overall terms, the theorem holds. I

Based on Theorems 1, 2 and 3, we can derive the detailed relationship between the
completion duration of a, and SC, WC, WI & SI. For clarity, we depict it in Figure 2.

4 : The slot does not include the dividing point (DP)

—— : The slot includes the dividing point (DP)

DpP DP
Rc‘a’f{:},) <=Aw(dp} D(ap) < Redfa)

A '.-emI S Rc-(fh'.-f)<= Dr’a{ O
All previous SC fixed-time [=====—=w———4 Previous SC fixed-time
constraints arz still of SC All previous SC fixed-time | constraints may now be of SC or

constraints are still of SC WC or Wl or SI

Previous WC fixed-time Previous WC fixed-time Previous WC fixed-time
constraints may now be of SC| constraints may now be of SC| constraints may now be of WC or
or WC (closer to SC than or WC ar WlorSI WlorS]
before)
Ave r’t.*!/ Dm.") T (time)

Figure 2: Relationship between completion duration of a, and SC, WC, WI & SI

302

3.2 Checkpoint Selection
According to the discussion in Section 3.1, we can draw the following conclusions:

* If D(a,) < Rcd(a,), we have to verify all previous SC and WC fixed-time constraints.

However, for previous WC fixed-time constraints, we need not verify whether they
are of SC.

* If Red(ay) < D(a,), we need not verify all previous SC fixed-time constraints. But we
have to verify all previous WC fixed-time constraints.

* If Red(a,) < Ave(a,), we need not verify all previous SC fixed-time constraints. As to
previous WC fixed-time constraints, we borrow some conclusions from [CY05b] and
we need not verify them either. In [CY05b], we already developed a method to adjust
the WC fixed-time constraints to be of SC. According to Theorem 3, after the
execution of a,, the status of the previous WC fixed-time constraints is changed for
better (even can be changed to SC). Therefore, we can still use the previous
adjustment. Hence, we need not verify it.

Based on the above conclusions, we can decide whether or not we should take a, as a
checkpoint and correspondingly we derive a new checkpoint selection strategy. For
convenience of the discussion, we denote it as CSS,cp (Activity Completion Duration
based Checkpoint Selection Strategy).

CSSucp is: At activity a,, if D(a,) < Rcd(a,), we take it as a checkpoint for the
verification of SC, WC, WI & SI of all previous SC fixed-time constraints, and for the
verification of WC, WI & SI of all previous WC fixed-time constraints. If Red(a,) <
D(a,), we take a, as a checkpoint for the verification of SC, WC, WI & SI of all previous
WC fixed-time constraints. If Red(a,) < Ave(a,), we do not take a, as a checkpoint.

According to CSS,cp, we can further derive Algorithm 1 that combines the checkpoint
selection process of CSS,cp and the fixed-time constraint verification. Algorithm 1 is
depicted on next page due to the space limit of this page.

By applying Algorithm 1, we can base the fixed-time constraint verification on CSS,cp.
As a result, we only need to conduct the fixed-time constraint verification at necessary
activity points. And at such points, we only need to verify those fixed-time constraints
that we should verify.

303

symbol Definitions:
ArraySC: an array of all previous SC fixed-time constraints that cover a,;
ArrayWC: an array of all previous WC fixed-time constraints that cover a,;
end Definitions
Input: ArraySC, ArrayWC, S(a,), Red(a,), Ave(a,), maximum, minimum and average durations of
all activities involved in ArraySC and ArrayWC;
Output: checkpoint report and SC, WC, WI & SI report;
If (D(a,) < Rcd(ay)) then
Output ‘a, is a checkpoint for the verification of SC, WC, WI and SI of all previous SC fixed-
time constraints, and for the verification of WC, WI and SI of all previous WC fixed-
time constraints’
while (not end of ArraySC) do
/ verify SC, WC, WI and ST of previous SC fixed-time constraints
Select current fixed-time constraint from ArraySC, say FTC(a;) (p<i);
if (Red(a;, a,)+D(ay.;, a)< fiv(a;)-S(a,;)) then
Output ‘FTC(a;) is of SC’
else if (Red(a;, a,) + Ave(a,.;, a;) < fiv(a;)-S(a;) < Rcd(a;, a,)+D(a,.,, a;)) then
Output ‘FTC(a;) is of WC’
else if (Red(a;, a,) + d(ay+, a;) < fiv(ay)-S(a;) < Red(a,, a,) + Ave(ay.,;, a;)) then
Output ‘FTC(a;) is of WI” ;
else if (ftv(a;)-S(a;) < Red(a,, ay)+d(ay,.;, a;) then
Output ‘FTC(a;) is of SI ;
end if
end while
while (not end of ArrayWC) do //verify WC, WI and SI of previous WC fixed-time constraints
Select current fixed-time constraint from ArrayWC, say FTC(a;) (p<i);
if (Red(a,, a,) + Ave(a,.;, a) < ftv(a)-S(a;) < Red(a,, a,)+D(ay:;, a;)) then
Output ‘FTC(a;) is of WC’ ;
else if (Red(a;, a,) + d(ay), a;) < fiv(ay)-S(a;) < Red(a,, a,) + Ave(ay.;, a;)) then
Output ‘FTC(a;) is of WI” ;
else if (ftv(a;)-S(a;) < Red(a,, ay)+d(ay:;, a;) then
Output ‘FTC(a;) is of SI ;
end if
end while
else if (Ave(a,) < Rcd(a,) < D(a,)) then
Output ‘a, is a checkpoint for the verification of SC, WC, WI and SI of all previous WC fixed-
time constraints’;
while (not end of ArrayWC) do
/ verify SC, WC, WI and SI of previous WC fixed-time constraints
Select current fixed-time constraint from ArrayWC, say FTC(a;) (p<i);
if (Red(a;, a,)+D(ay.;, a)< fiv(a;)-S(a,)) then
Output ‘FTC(a;) is of SC’;
else if (Red(ay, a,) + Ave(ay,+,, a) < ftv(a)-S(a;) < Red(a,, a,)+D(ay:;, a;) then
Output ‘FTC(a;) is of WC” ;
else if (Red(a), a,) + d(a,+, a;) < fiv(ay)-S(a;) < Rcd(a,, a,) + Ave(a,.,, a;)) then
Output ‘FTC(a;) is of WI” ;
else if (ftv(a;)-S(a;) < Red(a,, ay)+d(ay-,, a;) then
Output ‘FTC(a;) is of ST” ;
end if
end while
else / Red(a,) < Ave(a,)
Output ‘a, is NOT a checkpoint and there is no need of any fixed-time constraint verification’;
end if

Algorithm 1: Checkpoint selection and fixed-time constraint verification based on CSS,cp

304

4 Comparison and Quantitative Evaluation

In this section, we will evaluate our checkpoint selection strategy CSS,cp by comparing
it with other strategies: CSS;, CSS,, CSS;, CSS, and CSS;5 which are stated in Section 1.
Since CSS; is similar to CSS, as they both set checkpoints at every activity. And CSS; is
similar to CSS, as they both define the checkpoints before the grid workflow execution.
Therefore, we only analyse CSS;, CSS,, CSSs and CSS,cp.

According to the discussion in Section 3, to compare CSS;, CSS,, CSSs and CSS,cp, we
should analyse the unnecessary and omitted fixed-time constraint verification based on
them respectively. According to the definitions of the fixed-time constraint consistency
in Section 2, the primary fixed-time constraint verification computation is focused on the
sum of the maximum durations between two activities. Therefore, we take ecach
computation of the maximum duration addition as a verification computation unit.
Correspondingly, we analyse CSS;, CSS,, CSSs; and CSS,cp by comparing their
unnecessary and omitted verification computation unit numbers. We denote the
unnecessary and omitted verification computation unit numbers of CSS; as une,, and

css,

omi, respectively, CSS; as une,, and omi., respectively, CSSs as wune. and

css;

omi, respectively, CSSycp as une,, ~and omi,, respectively.

css

We consider a climate modelling grid workflow that may consist of hundreds and
thousands of activities and must be time constrained so that the weather forecasting can
be broadcasted on time [Ab04]. For simplicity, we focus on one fixed-time constraint in
it, say FTC(A). We suppose FTC(A) covers N activities. Since in the real-world grid
workflow systems, normally there are many grid workflow instances, we conduct the
quantitative analysis in a statistical way. Therefore, we introduce possibility QO for an
activity execution not exceeding its average duration (0<Q<I). For simplicity, we
assume that each activity has the same (. We now conduct the corresponding
comparison between CSS; and CSS,cp in Section 4.1, and between CSS, and CSS,cp in
Section 4.2, and between CSSs and CSSycp in Section 4.3. The comparison between
CSS;, CSS; and CSSs is beyond the scope of this paper as we are focusing on the
development and discussion of CSS,cp.

4.1 CSSACD \ A} CSS]

According to the consistency definitions in Section 2 and the discussion of CSS,cp in
Section 3, we can derive the following computing equations:
une,, = Q*N, omi, = 0; une =0, omi =0

css, eSS 4cp €SS 40p

omi_ ., une

Suppose N = 20, with O changing, we list corresponding wune,, , s, , and

€SS 4cp

omi, in Table 1. The value selection of N does not affect our analysis because what

€SS 4¢

we want is the trend of how une..

cssy 2

omi, , une, —and omi, are changing with O

changing.

305

Table 1: Comparison of unnecessary and omitted verification between CSS,cp and CSS;

0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

une_| 0 | 40 | 80 [120 | 160 | 200 | 240 | 280 | 320 | 360 | 400
une 0 0 0 0 0 0 0 0 0 0 0
omi, | 0 0 0 0 0 0 0 0 0 0 0
omi 0 0 0 0 0 0 0 0 0 0 0

€S 4cp

From the above computing equations and Table 1, we can see the following facts:

* omi, and omi,, are always 0. In fact, based on CSS;, we conduct the fixed-time

constraint verification at every activity. Therefore, there is no omitted verification. Based
on CSS,cp, we conduct the verification only at any activity whose completion duration is
more than its average duration. According to Section 3, we should do so. Therefore,

there is no omitted verification either. Therefore omi, =omi

€SS 4cp

*une,, is always 0. une, is also 0 if 0=0. In fact, based on CSS,cp, we conduct the

verification at any activity whose completion duration is more than its average duration.
And according to Section 3, we should do so. Therefore, une,, —is always 0. Based on

CSS;, we conduct the verification at every activity. If 0=0, the execution of every
activity will exceed its average duration. According to Section 3, we should conduct the
verification at every activity. Therefore, all verification based on CSS; becomes
necessary. Hence, une_, =0.

css,

* With Q increasing, une,, is increasing. This means that the more activities that can

be completed with their average durations, the more amount of unnecessary verification
based on CSS;. However, the amount of the unnecessary verification based on CSS,cp
does not change and is always less than that based on CSS;.

In summary, although CSS; does not omit any fixed-time constraint verification, it may
cause some unnecessary verification. Especially, the more activities that can be
completed within their average durations, the more amount of the unnecessary
verification based on CSS;. The unnecessary verification will eventually affect the
overall verification efficiency. Hence, CSS,¢p is more efficient than CSS;.

4.2 CSSACD VS CSS4

We suppose there are M checkpoints defined by CSS,. Then, according to the definitions
in Section 2, we can derive the following computing equations for CSS,:
unecss4 = Q*M*N Omi(mu, = (I_Q)*(N-M)*N

We now take some specific values to see how they perform. Suppose N = 20 and M=3.
The selection of the values does not affect our analysis because what we want is the

306

trend of how wne,, and omi,, are changing with O changing. With O changing, we list
corresponding une,, and omi,, in Table 2. For clarity, we also list corresponding

une and omi,, in Table 2 although they have been listed in Table 1.

€SS 4cp

Table 2: Comparison of unnecessary and omitted verification between CSS,cp and CSS,

0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

wne 0 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60
une 0 0 0 0 0 0 0 0 0 0 0

omi 340 | 306 | 272 | 238 | 204 | 170 | 136 | 102 68 34 0

omi 0 0 0 0 0 0 0 0 0 0 0

From the above computing equations and Table 2, we can see the following facts:

* Asdiscussed in Section 4.1, une., and omi,, are always 0.
D ACD 2D ACD

e If 0=0, une,, =0. In fact, based on CSS,, we conduct the verification at M predefined

activities. If 0=0, the execution of every activity will exceed its average duration. Then,
according to the discussion in Section 3, we must conduct the verification at every
activity. Hence, all verification at M prescribed activities becomes necessary and
consequently une,, =0.

*With Q increasing, une_ is increasing. This means that the more activities that can be

completed within their respective average durations, the more amount of the unnecessary
verification based on CSS,.

* If =1, omi,, =0. In fact, if O=1, all activities can be completed within their average

activities, according to Section 3, we need not conduct any verification. Namely, we will
not omit any verification by CSS,. Hence, omi,, =0. This is the best case for omi, .

*With Q decreasing, omi, is increasing. This means that the more activities at which

we should conduct the verification, the more omitted verification based on CSS,.

In summary, on one hand, CSS, may cause some unnecessary fixed-time constraint
verification. The more activities that can be completed within their respective average
durations, the more amount of the unnecessary verification based on CSS,. However,
CSS,cp does not incur any unnecessary verification. Since the unnecessary verification
will eventually affect the overall verification efficiency, CSS,cp is more efficient than
CSS,. On the other hand, CSS, may omit some necessary verification. The more activities
where we should conduct the fixed-time constraint verification, the more omitted
verification will be incurred. However, CSS,cp does not omit necessary verification.

307

Since the omitted verification will eventually affect the overall verification effectiveness,
CSS,cp is more effective than CSS,.

4.3 CSSACD VS CSS5

According to the discussion in Section 3 and [CYCO04], at a;, if D(a;)<Rcd(a;), then both
CSSycp and CSS; take a; as a checkpoint. Therefore, for the situation where
D(a;)<Rcd(a;), CSS,cp and CSS5 are the same in terms of the unnecessary and omitted
verification computation. Hence, we need not consider the situation and for simplicity,
we can assume that the possibility for the situation be 0. Then, we derive the following
computing equations.

une, =0 omi,, = (1-0)*N’

We now take some specific values to see how they perform. We suppose N = 20. The
value selection of N does not affect our analysis because what we want is the trend of
how wne_ and omi,, are changing with O changing. With O changing, we list

corresponding une, and omi_, in Table 3. For clarity, we also list corresponding

une and omi,, in Table 3 although they have been listed in Tables 1 and 2.

CSS 4cp

Table 3: Comparison of unnecessary and omitted fixed-time constraint verification between
CSS4cp and CSS;

O [00 01]02[03]04]05]06]07]08]09] 10
une,_ | 0 0 0 0 0 0 0 0 0 0 0
une.., 0 0 0 0 0 0 0 0 0 0 0
omi,, | 400 | 360 | 320 | 280 | 240 | 200 | 160 | 120 | 80 | 40 | 0
omio, |0 0 0 0 0 0 0 0 0 0 0

From the above computing equations and Table 3, we can see the following facts:

* Asdiscussed in Section 4.1, une,, ~and omi, arealways 0.

* une, is always 0. In fact, according to CSS5, we only conduct the fixed-time

CSS.
constraint verification at any activity whose completion duration is more than its
maximum duration. And according to the discussion in Section 3, at an activity, if its
completion duration is more than its average duration, we should conduct the
verification. According to Section 2, the activity average duration is not more than the
maximum duration. Hence, all verification based on CSS; is necessary. Hence une,,, =0.

* If O=1, omi,, =0. In fact, if O=1, all activities can be completed within their

respective average durations, according to Section 3, we need not conduct any
verification. Namely, we will not omit any verification by CSSs. Hence, omi,, =0.

308

*With Q decreasing, omi,, is increasing. This means that the more activities whose
s

completion durations are more than their respective average durations and less than or
equal to their respective maximum ones, the more omitted verification based on CSSs.

In summary, CSS; may omit some necessary fixed-time constraint verification. The more
activities whose completion durations are more than their respective average durations
and less than or equal to their respective maximum durations, the more necessary
verification will be omitted. However, CSS,cp does not omit necessary verification.
Since the omitted fixed-time constraint verification will eventually affect the overall
verification effectiveness, CSS,cp is more effective than CSS;.

5 Conclusions and Future Work

In this paper, based on the analysis of the limitations of the existing typical checkpoint
selection strategies, and the analysis of the relationship between the run-time activity
completion duration and SC (Strong Consistency), WC (Weak Consistency), WI (Weak
Inconsistency) and SI (Strong Inconsistency), a new checkpoint selection strategy named
CSS,cp has been developed. CSS,cp selects the checkpoints dynamically along the grid
workflow execution. The final comparison and quantitative evaluation have shown that,
compared to the existing typical checkpoint selection strategies, our strategy CSScp is
more efficient and effective. With these contributions, we can further investigate some
problems such as temporal exception handling when a fixed-time constraint is violated at
a checkpoint, and the mechanisms by which we can predict future possible checkpoints.

Acknowledgements

The work reported in this paper is partly supported by Swinburne Vice Chancellor’s
Strategic Research Initiative Grant 2002-2004. It is also partly supported by the National
Natural Science Foundation of China under grant No.60273026 and grant No.60273043.

References

[Ab04] Abramson, D. et.al.: An Atmospheric Sciences Workflow and Its Implementation with
Web Services. In Proc. of the 4™ International Conference on Computational Science,
Part I, Springer Verlag, LNCS 3036, , Krakow, Poland, June 2004; S. 164-173.

[Am04] Amin, K. et.al.: A Client-controllable Grid Workflow. In Proc. of the 37" Annual Hawaii
International Conference on System Sciences (HICSS’04), Hawaii, Jan. 2004; S. 210-
219.

[Ca03] Cao, J. et.al.: GridFlow: Workflow Management for Grid Computing. In Proc. of the 3™
IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid
2003), Tokyo, May 2003; S. 198-205.

309

[Cy04] Cybok, D.: A Grid Workflow Infrastructure. In Proc. of Workflow in Grid Systems
Workshop in GGF10, 2, Berlin, Germany, Mar. 2004.

[CY04] Chen, J.; Yang, Y.: Temporal Dependency for Dynamic Verification of Temporal
Constraints in Workflow Systems. In Proc. of the 3" International Conference on Grid
and Cooperative Computing, Springer-Verlag, LNCS 3251, Oct. 2004; S. 1005-1008.

[CYCO04]Chen, J.; Yang, Y.; Chen, T.Y.: Dynamic Verification of Temporal Constraints on-the-
fly for Workflow Systems. In Proc. of the 11™ Asia-Pacific Software Engineering
Conference (APSEC2004), IEEE CS Press, Busan, Korea, Nov./Dec. 2004; S. 30-37.

[CYO5a]Chen, J.; Yang, Y.: Temporal Dependency for Dynamic Verification of Fixed-date
Constraints in Grid Workflow Systems. In Proc. of the 7" Asia Pacific Web Conference,
Springer-Verlag, LNCS 3399, Mar. 2005; S. 820-831.

[CYOS5b]Chen, J.; Yang, Y.: Multiple Consistency States of Fixed-time Constraints in Grid
Workflow Systems. Technical Report, Faculty of ICT, Swinburne University of
Technology, Mar. 2005, http://www.it.swin.edu.au/personal/yyang/papers/2005TR-
Jchen-1.pdf.

[CMOO] Chinn, S.; Madey, G.: Temporal Representation and Reasoning for Workflow in
Engineering Design Change Review. IEEE Transactions on Engineering Management,
2000; 47(4), S. 485-492.

[De03] Deelman, E. et.al.: Mapping Abstract Complex Workflows onto Grid Environments.
Journal of Grid Computing, 2003; 1(1), S. 9-23.

[EPR99]Eder, J.; Panagos, E.; Rabinovich, M.: Time Constraints in Workflow Systems. In Proc.
of the 11" International Conference on Advanced Information Systems Engineering
(CAiSE’99), Springer Verlag, LNCS 1626, June 1999; S. 286-300.

[FPVO04]Fahringer, T; Pllana, S.; Villazon, A.: A-GWL: Abstract Grid Workflow Language. In
Proc. of the 4" International Conference on Computational Science, Part III, Springer
Verlag, LNCS 3038, Krakow, Poland, June 2004; S. 42-49.

[FoO2] Foster, 1. et.al.: The Physiology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration. In Proc. of the 5" Global Grid Forum Workshop
(GGF5), Edinburgh, Scotland, July 2002.

[HAOO] Hagen, C.; Alonso, G.: Exception Handling in Workflow Management Systems. [EEE
Transactions on Software Engineering, 2000; 26(10), S. 943-958.

[HuO3] Huang, Y: JISGA: A JINI-BASED Service-Oriented Grid Architecture. The
International Journal of High Performance Computing Applications, 2003; 17(3), S. 317-
327.

[KWLO02]Krishnan, S.; Wagstrom, P.; Laszewski, G.V.: GSFL: A Workflow Framework for Grid
Services. Technical Report, Argonne National Laboratory, Argonne, U.S.A., 2002.

[MO99] Marjanovic, O.; Orlowska, M.E.: On Modeling and Verification of Temporal Constraints
in Production Workflows. Knowledge and Information Systems, 1999; 1(2), S. 157-192.

[ZCPO1]Zhuge, H.; Cheung, T.; Pung, H.: A Timed Workflow Process Model. The Journal of
Systems and Software, 2001; 55(3), S. 231-243.

310

