
Maintainability is a Versatile Quality Attribute

Jens Knodel, Matthias Naab

Fraunhofer IESE

Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

{jens.knodel, matthias.naab}@iese.fraunhofer.de

Abstract— Software architecture evaluation has been widely

accepted as a powerful means to mitigate risks in the design and

evolution of software systems. To date we have conducted more

than 75 architecture evaluation projects with industrial

customers in the past decade. One recurring lesson learned that

we experienced across many architecture evaluation projects is

that maintainability indeed is a versatile quality attribute and

its evaluation requires a mix of quantitative and qualitative

checks.

Keywords—software architecture, architecture evaluation,

maintainability, reconstruction, reverse engineering, experience

report

I. INTRODUCTION

There is no doubt about it: the quality attribute
maintainability is crucial for the long-term success of a
software system. The evaluation of maintainability
consequently plays an important role in software evaluations.
It contributes to answering questions like “Is our system a
solid basis for the future?” or “Can we make the upcoming
changes within a reasonable amount of time and budget?”

Evaluating maintainability can mean to check for different
aspects: (1) it can be checked how adequate and maintainable
an architecture and the underlying software system is in terms
of supporting certain anticipated changes, (2) it can be
checked how large the impact of a potential change request is
and thus enable effort estimations, (3) it can be checked to
which extent rules of good design and coding are adhered to,
and (4) it can be checked how readable and understandable
(and thus maintainable) the source code is. While the first two
address specific properties of the product, the latter two
address mental capabilities of software engineers.

The ISO 25010 definition of the quality attribute
maintainability reflects this differentiation in its sub-qualities:

 Modifiability / changeability are aspects that mainly
determine the overall change effort by the degree to which
a concrete change is distributed over the whole system
(from local to nearly global). This is mainly determined by
major architecture decisions. Whether a change can be
performed with low effort (meaning the system is
maintainable) can be strongly influenced by architecture
decisions, which cannot be measured locally in the code.
For example, the requirement to replace the UI framework
(e.g., because it is no longer supported by the vendor)
might spread out over large parts of a system if there is no
clear separation of the UI part and maybe even the
concrete technology.

 Readability / analyzability are aspects that are mainly
aiming at the understanding of the developers and strongly

depend on the code quality (of course not exclusively; the
overall architecture also has some impact here). That is,
when developers have to change a certain part of the code,
they first have to understand it. Good code quality
obviously supports this. There has been a lot of research
and numerous approaches exist regarding how to measure
what good readability of code means. What is interesting
now is that this type of code quality does not depend on
the concrete product under development. Rather, it
depends on the mental capabilities of the available
developers. For example, if methods are too long or the
degree of nesting is too high, they are hard to read, or
cyclic dependencies are hard to understand. Finding good
rules and thresholds thus has to be calibrated in empirical
studies observing how well developers can work given
certain code characteristics.

II. EVALUATING MAINTAINABILITY

Maintainability is a quality attribute with many
indirections. Most of the time, it is not directly visible, in
particular not for the end user, often not for the customer, and
often not even for the developer. It is very common that there
is not so much focus put on maintainability during initial
system development (where time to market often
predominates). The lack of maintainability and its
consequences are perceived in later stages of system evolution
and maintenance. Even then, the perception is mainly indirect,
visible only in the high cost of changes. Another reason that
makes maintainability harder to handle is that it is mostly
difficult to precisely formulate maintainability requirements.
Anticipated changes can be stated, but often it is pretty open
how a system will evolve. In terms of readability,
requirements are rather stated in terms of coding conventions
than as real requirements.

A. Measuring Maintainability Quantitatively

When it comes down to measuring maintainability, this is
not an easy task. In practice, the simple solution is often to buy
a tool that measures code metrics and also outputs results on
maintainability. These quantitative results can, of course, be
valuable. However, they are only part of the answer. They are
that part of the answer that deals with the readability /
analyzability of the source code. The good thing is that it is
easy to codify such rules and quantitative metrics and measure
them with standard tools. This is often done in practice.

What is missing are considerations of major architectural
decisions and concrete change scenarios of the software
system. However, measuring this part of maintainability is not
so easy for several reasons:

 Measurement needs concrete (anticipated) change
requests as a baseline and often change requests that may
occur further along in the future are not known yet.

 Measurement is not possible in absolute terms, but rather
requires the usage of architecture evaluation techniques,
which produce only qualitative results.

 Measurement is only possible manually with the help of
experts; tool support is quite limited as the evaluation is
individual for each specific product. Thus, this type of
measurement is often neglected in practice and, as a
consequence, maintainability is not measured
sufficiently.

B. Checking Adequacy of Solution Concepts for

Maintainability Qualitatively

There is no good or bad architecture – an architecture (or
rather the solutions concepts defined by the architecture)
always has to be adequate to satisfy requirements of the
system at hand. More clarification is needed regarding what
talking about the adequacy of “an architecture” means: An
architecture is not a monolithic thing: It consists of many
architecture decisions that together form the architecture. In
the SAC, architecture drivers and architecture decisions are
correlated. An architecture decision can support an
architecture driver; it can adversely impact the driver; or it can
be unrelated. Whenever it is not possible to observe properties
in the running system or in local parts of the implementation,
architecture becomes the means to provide the right
abstractions for evaluating system properties.

Evaluating for maintainability benefits from a sound set of
architecture drivers as input. The architecture drivers (in case
of maintainability this means potential, possible or concrete
change requests) are then evaluated qualitatively, the findings
can be aggregated into an overall result. The checking of the
adequacy works across “two worlds”: requirements in the
problem space and architecture in the solution space. There is
no natural traceability relation between requirements and
architecture. Rather, architectural decisions are creative
solutions, which are often based on best practices and
experiences, but sometimes require completely new
approaches. This has an impact on the solution adequacy
check: It offers limited opportunities for direct tool-supported
analyses and is rather an expert-based activity.

The goal is to get the confidence that the solutions are
adequate to be prepared towards change. As architecture is
always an abstraction of the underlying software system, it
typically does not allow for ultra-precise results. Thus, it
should be made clear throughout an architecture evaluation
which level of confidence needs to be achieved and what this
means in terms of investment into evaluation activities.

Another form of qualitative evaluation works without
concrete architecture drivers checking for the usage of
architectural best practices like patterns or the SOLID
principles. While these best practices can greatly support
anticipated changes, they still can provide large benefits for
unknown changes. However, the confidence achieved is
lower.

C. Interpretation of Quantitative and Qualitative Findings

The interpretation of the findings is crucial in order to
benefit from the overall evaluation results. The evaluation

reveals typically positive and negative findings about both the
code quality and the adequacy of the solution concepts. The
interpretation of the findings is context-dependent, based on
the underlying evaluation question, the software system under
evaluation, and the nature of a finding. In particular in case of
negative findings, it is the starting point towards deriving
improvement actions.

The nature of findings is characterized by the cause of the
finding. Causes can either be based on product properties such
as the inherent flaws or weaknesses of the software system or
technology and their misusage, or on human capabilities and
human limitations in terms of coping with complexity (i.e.,
comprehensibility) and dealing with continuous change in the
evolution of the software system (which is the inevitable
characteristic of any successful system).

Typically, findings caused by technologies in use and
limitations of human capabilities are more general. They serve
to detect risks with respect to best practices, guidelines,
misusage, or known pitfalls in the technologies. In practice, it
is much easier to aim for such causes because tools can be
bought that come, for instance, with predefined rules or
standard thresholds and corridors for metrics. They are easy to
apply and make people confident that they are doing the right
thing to mitigate risks. The downside is that such general-
purpose means often do not fit to the evaluation questions
driving the architecture evaluation, but this is not discovered.

III. CONCLUSIONS

What is common sense for testing (no one would just run
technology-related test cases without testing the product-
specific logic of the software system) is not the case for
architecture evaluations and source code quality checks. Here,
many development organizations and tool vendors claim to be
product-specific with a general-purpose technique realized in
a quality assurance tool that can be downloaded from the
Internet. However, these general-purpose techniques can
merely lead to confidence regarding the avoidance of risks
with respect to the technology or the limitations of human
capabilities. To reliably make statements about the
maintainability of a software system, both aspects,
quantitative measurement of the source and qualitative
evaluation of the adequacy of the solution concept are
essential. Our lessons learned for maintainability are partly
transferrable to other quality attributes such as performance,
security, or reliability exhibit similar properties, meaning that
code quality and architectural solution adequacy are both
crucial for fulfilling the requirements.

Another characteristic of maintainability (which has
increasing importance due to demanding requirements
regarding time-to-market) is beyond the paper’s scope:
Changing a software system more and more needs a strong
and dedicated integration, testing, and delivery pipeline which
allows bringing the changed system in production with a high
confidence in the resulting quality. This covers process,
tooling, and architectural aspects that need to be well aligned
to achieve the maintenance and release goals.

REFERENCES

[1] J. Knodel, M. Naab: „Pragmatic Evaluation of Software
Architectures“, Springer, ISBN 978-3-319-34176-7, 2016.

	I. Introduction
	II. Evaluating Maintainability
	A. Measuring Maintainability Quantitatively
	A.
	B. Checking Adequacy of Solution Concepts for Maintainability Qualitatively
	C. Interpretation of Quantitative and Qualitative Findings

	III. Conclusions
	References

