Capturing the Semantics of Quality Requirements into an
Intermediate Predesign Model

Vladimir A. Shekhovtsov', Christian Kop?, Heinrich C. Mayr®

'Department of Computer-Aided Management Systems,
National Technical University “KhPI”, Kharkiv, Ukraine
shekvl@yahoo.com

? Institute for Applied Informatics,
Alpen-Adria-Universitit Klagenfurt, Austria,
{chrisjmayr} @ifit.uni-klu.ac.at

Abstract: We present an approach to capturing the semantics of quality require-
ments in an intermediate predesign step residing between quality requirements
elicitation and conceptual design. We propose Quality-Aware Predesign Model
(QAPM) to be used at this step. In this model, the problem domain is viewed as a
set of concerns. Out of this set, concerns related to quality are separated from those
related to the main functionality of the system. Quality concerns are represented by
hierarchical quality models incorporating quality characteristics and indicators.
The semantics of both functional and quality concerns is modeled using Klagenfurt
Conceptual Predesign Model (KCPM) concepts with necessary modifications. On
basis of this, QAPM offers the set of concepts to represent the semantics of cross-
cutting relationships between the concerns.

Key words: software quality, requirements engineering, conceptual predesign

1 Introduction

Ensuring the quality of software is one of the major problems today. This starts already
with requirements elicitation. The problems in this field related to a software quality
influence all later phases of the software development process. Therefore, more attention
should be paid on methods to collect quality requirements. Particularly, capturing the
semantics of quality requirements before performing design-time activities in a quality-
driven software process is important for the following reasons:

1. Since this semantics forms an important body of knowledge that can be lost in later
stages of the software process it is preferable to capture it before transition to these
stages [ChO7].

2. If the representation of these requirements refers to the abstract design-time notions
(classes, attributes, etc.), it can be too difficult for the system users to understand and
validate and can lead to early design decisions (e.g., decomposing the system into de-
sign-time artifacts unfamiliar to the end user) [KM98].

3. This semantics reflects design-independent view of system quality in a particular
domain. In this view, the representation of the semantics of quality and the functionality
affected via this quality does not depend on any design notation or methodology. This
way, it can serve as a basis for the description of the problem space for a domain.

25

To solve the above problem we follow Klagenfurt Conceptual Predesign [KM98, KM02]
and Aspectual Predesign [SKO05, Sh06] approaches and propose to establish an interme-
diate semantic model (predesign model) residing between quality requirements elicita-
tion and conceptual design. The purpose of this model is to describe the notion of the
software quality that can be used at different stages of the software process, and capture
the quality requirements semantics in a way that can easily be understood and verified by
the system users and can be mapped into different design notations. We call this model
Quality-Aware Predesign Model (QAPM).

The rest of the paper is organized as follows. Section 2 gives background information
about software quality and existing predesign approaches. Section 3 describes the pro-
posed predesign model; a prototype tool support for this model is outlined in Section 4.
Section 5 discusses the related work. Section 6 concludes the paper and shows the direc-
tions for future research.

2 Background Information

2.1 Software Quality

Quality models. Quality model is defined as “the set of characteristics and relationships
between them, which provides the basis for specifying quality requirements and evaluat-
ing quality” [ISO1]. In most approaches, quality models are based on hierarchies of qual-
ity attributes [Ca05, FCO03, Fi03]. Top-level attributes represent general quality charac-
teristics (functionality, reliability, etc.); bottom-level attributes represent more concrete
sub-characteristics (e.g., reliability can be decomposed into fault tolerance, recoverabil-
ity, etc.)

Specific quality models for different domains are proposed in the literature [FC03, 0199,
TPO3], but the most important effect on industry is achieved by their standardization.
The most widely known quality model standard is ISO 9126 (1991), in recent years it
was extended, for example in [IS01] (ISO 9126-1 quality model) the top-level character-
istics are grouped into several categories, namely, product quality characteristics (exter-
nal and internal) and quality in use characteristics. A hierarchy of ISO 9126-1 product
quality characteristics will be used further in this paper (it is shown in Table 1):

Top-level . . | Sub-characteristics

characteristic

Functionality | suitability, accuracy, interoperability, security, functionality compliance
Reliability maturity, fault tolerance, recoverability, reliability compliance

Usability understandability, learnability, operability, attractiveness, usability compliance
Efficiency time behavior, resource utilization, efficiency compliance

Maintainability | analyzability, changeability, stability, testability, maintainability compliance
Portability adaptability, installability, coexistence, replaceability, portability compliance

Table 1: Product quality characteristics in the ISO 9126-1 quality model [IS01]

Following general practice, we assume that quality sub-characteristics are supposed to be

26

quantified via quality measures (indicators). For example, “time behavior” sub-
characteristic can be quantified via turnaround time, response time, CPU elapsed time,
I/O processing time and several other indicators. This quantification process is often
called an operationalization of the quality model [TP03]. Such operationalization is evo-
lutional: the number of quantifiable quality sub-characteristics increases over time as
more knowledge about the domain and the expected system becomes available. In the
meantime, quality model should be able to express the fact that some of the quality char-
acteristics are formulated in imprecise, qualitative form.

There are two important properties of quality models from the perspective of their im-
plementation for the particular project.

1. Different categories of stakeholders have their own perspectives of quality, so the
particular set of quality characteristics varies by different categories of stakeholders
[Si97] (e.g., maintainability is perceived by the system administrators whereas time be-
havior is perceived by the end users etc).

2. There are interdependencies between the different elements of the quality model.
Meeting requirements related to one characteristic can affect another one positively or
negatively. For example, achieving the goal related to reliability can positively affect the
goal related to usability but negatively — the goal related to time behavior (performance).
Chung et al. [Ch00] elaborated special notation for representing these interdependencies,
part of it is shown on Table 2:

Contribution | Description
makes (++) affected goal is impossible to achieve without achieving an affecting goal

breaks (--) affected goal is impossible to achieve with achieving an affecting goal
helps (+) affected goal is easier to achieve with achieving an affecting goal
hurts (-) affected goal is easier to achieve without achieving an affecting goal

Table 2: Interdependencies between quality characteristics [Ch00]

Quality Requirements. Different classifications of requirements are proposed in litera-
ture, some of them hide quality requirements category under the notion of non-functional
requirements, but current trend (in particular, supported by the publications originated
from the people involved in producing ISO 9126 standard documents, e.g., [Sy06]) is to
separate these two categories. For example, the classification by Glinz [GI07] explicitly
addresses quality requirements. First, two kinds of concerns (matters of interest in a sys-
tem [Fi06]) are introduced: (a) functional concerns related to expected system function-
ality and (b) quality concerns related to quality characteristics defined by some quality
model (e.g., ISO 9126-1). Furthermore, the set of requirements is decomposed into two
main categories: (1) functional requirements related to functional concerns; (2) quality
requirements related to quality concerns. In this paper, we will follow this classification.

Firesmith [Fi03, Fi05] proposes the model of quality requirements directly based on hi-
erarchical representation of the quality model. In this model, low-level elements of qual-
ity model hierarchy (indicators) form the foundation for the quality criteria and quality
requirements. Every quality criterion reflects “a single aspect of quality of the system”
[ISO1]. Usually criteria can be seen as quality indicators connected to the particular sys-
tem artifacts or its operations, e.g., for “response time” quality indicator the criterion can

27

CLINT3

be “response time for searching the customer by name”, “response time for bank account
withdrawal” etc. Quality criteria together with threshold values form the quality re-
quirements. For example, the requirement based on described criteria could look like
this: “response time of searching the customer by name must not exceed 1 second”. In
this paper, we will use this model with necessary modifications to structure the quality
requirements.

2.2 Klagenfurt Conceptual Predesign

In this section, we briefly introduce the process (Klagenfurt Conceptual Predesign, KCP)
[KM98, KMO02] using special semantic model (Klagenfurt Conceptual Predesign Model,
KCPM) in an intermediate step of the software process residing between requirements
engineering and conceptual design.

Initial Steps. The process of Conceptual Predesign starts with an identification of organ-
izational units within the universe of discourse (UoD). These units are homogenous with
respect to tasks and terminology used, e.g., they can be the departments of the given or-
ganization (sales, finances, etc.) Then, the identification of the tasks to be supported by
the IS and organizational units that are occupied with that tasks is performed with the
help of the special table “Organizational Unit / Task” shown on Fig.la.

The next step is establishing a requirements elicitation/collection plan. For every task,
the identification of stakeholder groups is performed (users, management, experts, etc.)
who may provide relevant information concerning this task. This activity is supported
with the table “Task / Information provider” (Fig.1b).

Org.unit Task
Produc | Manage- .
Sales . Pro- Accounting Payroll
Task tion ment .
vider

Accounting + + Users +
Payroll + Managers +

(a) (b)

Figure 1: Tables “Organization Unit / Task” (a) and “Task / Information Provider” (b)

Requirements Elicitation. After the plan is established, the initial requirements collec-
tion takes place. The requirements are collected in free-text form and indexed by task,
stakeholder, organizational unit, date, etc. Then, this information is transferred into the
semantic model (KCPM) either manually (after finding implicit information, eliminating
redundancies, etc.) or via NLP text analysis [Nib02].

KCPM consists of a small set of semantic concepts. Some of these concepts allow de-
scribing the static aspects of UoD. There are two main static concepts: thing-type (a gen-
eralization of the conceptual notions such as entity type, class and attribute or value
type) and connection-type (representing relationships between things described from the
point of view of all of the involved sides, these different aspects of a connection type are
defined using perspectives). The information related to the static part of KCPM is usu-
ally collected into glossaries or templates (thing-type glossary and connection-type glos-
sary). The metamodel for the static part of KCPM is shown on Fig.2.

28

ModelingComponent

/\
ModelingElement
name
description
Example . |QuantityDescription isSynonymTo |
descriptior —| A | GeneralConnectionType
<@ ThingType
Q..
Perspective thePerspectiveDeterminer 1 P
minCardinality | +) theSuperType
maxCardinality +] ConnectionType
n_ame theSubType -
directed * 0..

1 | theConnectionTypeDeterminer

Figure 2: Static KCPM metamodel (from [Ba07a])

For behavior modeling, KCPM introduces the concepts of operation-type (modeling
functional services called via messages), and cooperation-type (modeling actions per-
formed under certain conditions). This information can also be collected into glossaries
but users often find the graphical notation more convenient. An example of this notation
is shown on Fig.3.

order all articles of
comes in ;

order department order in stock order department
(O—>_ checks articles —O—> releases order

O conditions O operation-type I:I cooperation-type

Figure 3: Graphical notation for the dynamic KCPM concepts (from [KM02])
2.3 Handling Quality Requirements in Conceptual and Aspectual Predesign

KCPM Constraints. Though KCPM is built to capture the semantics of all kinds of
requirements, more attention is paid to the functional ones. Non-functional requirements
are mainly collected as constraints (see Fig.4 for the corresponding part of KCPM meta-
model).

ConstraintCategory ConstraintType Constraint

Figure 4: Part of KCPM meta-model describing the constraints [K002]

Each requirement represented by a constraint (e.g., The System shall process a minimum
of 8 transactions per second) could be related to at least one constraint type. In [Ko02],
a constraint type characterizes the place of requirement (e.g., “time behavior” or “per-
formance”) in one particular requirement classification. Every constraint type is con-

29

nected to one constraint category corresponding to this classification (e.g., “IEEE Std.
830-1993). This way of connecting constraint categories and constraint types to a con-
straint gives the designers more flexibility. They are allowed to define different con-
straint categories for different purposes (“/EEE Std. 830-1993”, “Web Portal Qualities”,
“My Characteristics” etc). Within every category, it is possible to collect the types of
constraints belonging to it. Once the types are defined, the designer is able to relate the
collected constraints to one or more constraint types from different categories. In addi-
tion to this, if the particular performance requirement could be related to exactly one
specific operation type (e.g., “The operation “process an order” must return a result in
less then 0.15 sec”) the model offers the shortcut for this case by shifting this require-
ment from the constraint glossary to the meta-attribute “duration” of the operation-type.
This meta-attribute thus can be either the expected duration of the operation or a con-
straint describing the maximum acceptable duration of an operation.

Aspectual Predesign. The main goal of an Aspectual Predesign technique [SK05, Sh06]
is extending KCP to deal with crosscutting concerns in the problem space. It aims at
capturing the semantics of “aspectual” (crosscutting) requirements ([Ch07, Fi06]) into a
semantic model (Aspectual Predesign Model, APM) similar in its purpose to KCPM. In
this model, crosscutting behavior units implementing quality requirements (advices
[Fi06]) are represented via operation-types; pointcuts (rules that connect advices to the
places in the model where they can be called) are represented via modified connection-
types. Aspectual predesign can be seen both as an extension to KCP that allows mapping
the aspectual requirements and as an intermediate step of the AOSD residing between
aspect-oriented requirements engineering and aspect-oriented modeling.

KCPM and APM Merging Issues. We start from discussing the weak points of the
above approaches with respect to representing the software quality.

Although the treatment of functional and non-functional requirements in KCPM gives
the user significant flexibility, there are still some problems. The notion of quality is not
explicitly addressed in the model, there is no quality model used. As a result, no quality
attributes and measures are considered in the original model (the constraints can be sup-
plemented only with plain-text description). In addition, it is not possible to take into
account different perception of quality for different stakeholders. The notion of concern
and the need of separating concerns are not considered as well.

Aspectual Predesign was also not aimed at collecting the quality requirements in general:
it did not employ the notion of quality. Actually, it was only possible to integrate aspec-
tual (crosscutting) requirements with operational representation (having some action
associated with them). Additionally, its support for separating concerns was simplistic: it
was only possible to represent artifacts statically crosscutting whole thing-types (i.e. all
their operations at once in all situations) or particular operations called in all contexts.

It is clear that these two approaches are complimentary. Whereas KCPM represents
quality requirements as constraints and allows user-supplied classification of these re-
quirements, APM allows treating the requirements as belonging to crosscutting concerns
and offers some guidance in separation of these concerns and specifying the composition
rules representing crosscutting relationships. It seems feasible to merge these approaches

30

in a way that makes the resulting technique benefit from their advantages. The results of
this merge are presented in the following section.

3 Quality-Aware Predesign Model

Several problems need to be solved during QAPM development: (1) allowing flexible
integration of the quality model; (2) extending the KCPM metamodel to integrate com-
plete representation of quality requirements; (3) implementing support for quality re-
quirements evolution; (4) implementing the semantic support for separation of quality-
related and functional concerns; (5) implementing support for relationships between
these concerns.

In this section, we describe our approach to resolving these problems.
3.1 Integrating Quality Models into QAPM

For allowing a flexible integration of the quality—related information, we introduce two
new semantic concepts for our predesign model: a quality characteristic and a quality
model. The metamodel for these concepts is shown on Fig.5. It is clear that we cannot
use existing concepts (such as thing types) for this purpose because they represent types
of things whereas concrete quality characteristics (performance, reliability etc.) are the
instances of the particular high-level concept “quality characteristic”. Actually, we need
to express hierarchy of instances, which is not possible in KCPM. A quality characteris-
tic is a semantic concept for elements from all levels of a quality model hierarchy; a
quality model represents the particular instance of this hierarchy. For quality indicators,
their units of measurement are values for “value domain” meta-attribute of the quality
characteristic.

QualityModel | 1 *[QualityCharacteristic perceivedBy | StakeholderGroup
name . [name * * [name
affectedBy value_domain 1 belongsTo
Interrelationship = — - * *
contribution affects

Figure 5: Part of the QAPM metamodel describing the quality model

Fig.6 contains the fragment of a quality model glossary corresponding to the ISO 9126-1
quality model. Unique identifiers (id#) are assigned to all characteristics on all levels of
hierarchy to make it able to connect every quality characteristic to KCPM functional
schema elements. It reflects the support for quality requirements evolution, making pos-
sible to express assessments of the base functionality via quality characteristics on dif-
ferent levels of refinement [Me07]. Different quality models correspond to different in-
stances of glossaries; it is also possible to establish the separate meta-glossary containing
the definitions of quality models. In this paper, we presuppose that only one quality
model for the domain is defined.

31

The reason of storing all the quality model information in the predesign model reflects
the “build-your-own model” paradigm of the quality model construction [FP97] and
makes it possible to tailor already existing quality models for the particular problem do-
mains. It is also possible to use existing quality model if the analysts feel it sufficient.

Quality Model: ISO 9126 for UoD: Banking
id# name belongs to value domain
Q01 Functionality
Q01-1 Suitability QO01, Functionality
Q0 1-4 Security QO01, Functionality
Q04 Efficiency
Q04-1 Time behavior QO04, Efficiency
Q04-2 Resource utilization QO04, Efficiency
QO4'-”1-1 Response time QO04-1, Time behavior seconds

Figure 6: Part of the quality model glossary

To reflect the dependencies between quality characteristics and stakeholder categories,
we introduce the cross-reference table shown on Fig.7. This table is filled immediately
after the quality model information is introduced; it uses the stakeholder categories pre-
viously collected into the table “Task / Information Provider”.

QC name Provider type Users Managers
QO01, Functionality +

QO01-1, Suitability +

Q04-1, Resource utilization +

Figure 7: Table “Information Provider / Quality Characteristic”

To reflect quality characteristics (QC) interrelationships we introduce another cross-
reference table shown on Fig.8. The symbols used for the cells reflect the notation from
[Ch00]: makes (++), breaks (--), helps (+), hurts (-). Empty entries correspond to non-
existing interrelationships.

Quality Model: ISO 9126 for UoD: Banking
Affected QC | (301, Functional- | QO1-1, Suit- | Q04-1, Resource

Affecting QC ity ability utilization
QO01, Functionality ++ +
QO1-1, Suitability + -

QO04-1, Resource utilization -

Figure 8: Table “Quality Characteristic Interrelationships”
3.2 Modeling Concerns and Requirements

Modeling Concerns. In our model, quality characteristics and sub-characteristics are
treated (following [G107, Me06]) as concerns. We also follow [Me06] in distinguishing

32

the dominant functional concern which controls the decomposition of the system and
modeling all other concerns (in particular, all quality concerns) as crosscutting concerns.
While the quality concerns form the primary interest of this paper, we assume that the
dominant concern is the main functionality of the system. This concern defines the de-
composition of the predesign model into the set of thing-types and other KCPM schema
elements. We selected this asymmetric approach to concern modeling for QAPM as our
first attempt to establish predesign-level separation of concerns. The multidimensional
(symmetric) approach [MRAO5] is also promising; we will investigate it in future. This
approach treats all the concerns (including the functional ones) equally so we need to
find a way to represent particular concerns and concern-independent composition rules.

In this paper, we also assume that quality concerns directly correspond to the quality
characteristics and sub-characteristics in the underlying quality model (e.g., for ISO
9126 quality model the candidate concerns are “Efficiency”, “Usability”, “Time behav-
ior” etc.) As a result, we do not need any special notation to represent these concerns; the
quality model glossary depicted on Fig. 6 will serve the purpose of quality concern glos-

sary as well.

It is also possible to have other functional concerns besides the dominant one. The
treatment of these concerns is a target for future research.

Modeling Join Points. To be able to represent crosscutting relationships between func-
tional and quality concerns, we need to specify a join point model [CJR06] based on
captured requirements semantics. This model defines the set of all possible places where
the functionality of the base concern can be extended or replaced with the functionality
of the crosscutting concern. In our case, this model defines the set of all possible KCPM
artifacts or their elements that can be affected with quality measures or imprecise goals.
Note that some of join points refer to structural (static) KCPM artifacts (thing-types etc.)
whereas some refer to behavioral (dynamic) ones (cooperation-types etc.) The elements
of the joint point model are shown on Table 3.

Join point Description Category

thing-type particular thing-type as a whole structural

connection-type particular connection-type as a whole structural

operation-type particular action or service call behavioral

cooperation-type particular sequence of actions with preconditions behavioral
and post-conditions

Table 3: Elements of the QAPM join point model

After the join point model is defined, the next step is to establish the semantics of quality
requirements.

Modeling quality requirements. We propose to model quality requirements as con-
straints. To reflect the relationship between base and quality concerns, every such con-
straint will contain the references to particular quality concern (quality characteristic)
and the element of dominant functional concern belonging to the joint point model
(KCPM artifact). The QAPM metamodel of quality requirement is shown on Fig.9.

33

Constraint

sequencing

description

applicability

decisionOperator
QualityCharacteristic threshold ModelingElement
name N - |name
value_type description

Figure 9: Part of QAPM metamodel describing the quality requirement as a constraint

As the ModelingElement is the root of the schema elements hierarchy in the KCPM
metamodel, we decided to associate the QualityCharacteristic to this abstract meta-class
and enhance this association using the Constraint associative meta-class. The meta-
attributes characterizing the quality requirement constraint are as follows:

1. “sequencing” reflects the temporal and conditional dependencies between base and
quality concern elements [Ch07]. The set of possible values reflecting these dependen-
cies includes “before”, “after”, “wrap”, “instead”, “concurrently”, “if”’, and “if not”.

2. “description” contains the description of the requirement. For imprecise require-
ments, this meta-attribute is supposed to contain all the information available for the
requirement, e.g., “the system must be secure”. For refined requirements, the following
two meta-attributes will be used as well.

3. “applicability” represents applicability condition for this requirement (e.g., “during
peak hours”, “during startup and shutdown”, “if the system is in the safe mode” etc.)
4. “decisionOperator” contains the operator which needs to be applied to the thresh-

old value to determine if the requirement is satisfied or not (e.g., “equals”, “less” or
more complicated operators)
5. “threshold” contains the threshold value.

Fig.10 shows the fragment of a constraint glossary representing imprecise (C01) and
refined (C02) quality requirements. We suppose thing-type Order and cooperation-type
Order department checks articles are already defined in a model.

id# quality functional se- description | applica- | decision | threshold
character- element quenc- bility | operator
istic ing

CO01 [QO01-4, DO1, the access
Security Order must be secure

C02 |QO04-1-1, |EO1, Order wrap | the response during |less 0.5
Response | department time must be | peak
time checks articles short hours

Figure 10: Quality requirements in the QAPM constraint glossary

Such representation is sufficient for both quantitative and qualitative requirements. The
treatment of the requirements with operative representation (related to the specific action
to be taken), is a target for future research, actually they can be implemented via intro-
ducing the third reference for the constraint pointing to the operation-type or coopera-
tion-type describing the crosscutting behavior.

34

4 Tool Support

A prototype for tool support (QAPMTool) was implemented for the model. The design of
the tool follows the APMTool architecture [Sh06], the difference is that the QAPMTool
kernel does not use special XML-based format to exchange the information with other
parts of the system, web service interface is implemented instead (Fig.11). The core of
the system is based on a QAPM metamodel implemented using Eclipse Modeling
Framework.

Users / verifiers

\ Presentation layer (Spring) ‘

T 1

Quality : | |
require- -»{ Information QAPMTool Kernel Ly Information
ments producers (EMF, Spring) | consumers

1

1

1

o

Data Access Layer (Hibernate)
A

A\ 4
web service interface
Database

Figure 11: QAPMTool architecture

Currently, the prototype is limited to the support of the functionality of the QAPMTool
kernel together with a database support. The database access is implemented using Hi-
bernate, the domain layer uses EMF-generated code integrated with the Spring frame-
work component support.

5 Related Work

An approach to representing the quality requirements is described in [Ba07b]. This paper
describes an ElicitO tool that uses domain and quality ontologies to aid in organizing
elicitation interviews. Described quality ontology contains almost exact copy of the ISO
9126 quality model hierarchy and it is used as a quality model in QAPM. Quality re-
quirements are represented using information from both ontologies; their representation
is close to QAPM as it also follows the model of Firesmith. This approach, however, is
different from our technique in several aspects:

1. It is limited to requirements elicitation via interviews supported by a specific tool;
no other software process activities are addressed and no formal description of the model
is given.

2. Though the paper [KMZ04] shows that KCPM glossaries could be used to repre-
sent domain ontologies, so building domain ontology and KCPM can bring close results,
it is not the case for ElicitO. In particular, the ElicitO domain ontology does not address
behavioral aspects of the system; actually, the process of defining this ontology is not

35

formalized and cannot be compared to KCP.

3. The quality ontology describes a hierarchy of concrete ISO 9126 quality character-
istics; no upper ontology is discussed (similar in purpose to the OAPM metamodel
shown on Fig.5), so it is less flexible.

4. The representation of quality characteristics’ interrelationships and integration of
different perceptions of quality for different stakeholder groups is not implemented.

There are other approaches close to QAPM in purpose. In particular, the papers [ChO06,
Ch07] are devoted to establishing the semantic model for crosscutting requirements. The
described approach does not specifically target quality requirements, modeling crosscut-
ting requirements instead (such requirements can be related to quality or not). Elaborated
quality-driven approach targeted to Web engineering is proposed in [Ca07], it also uses
representation of quality requirements close to what is proposed in our approach, but it is
limited by its domain.

6 Conclusions and Future Work

In this paper, we have proposed the quality-aware intermediate model based on the
KCPM metamodel. It allows capturing quality requirements semantics into glossary en-
tries that can be verified by the end users. We showed that this model flexibly integrates
specific or standard quality models taking into account specific perception of quality for
different stakeholder groups and interrelationships between quality characteristics. We
also showed that this model could represent evolving quality requirements with different
degree of refinement. This model separates base and quality-related concerns and flexi-
bly describes the relationships between these concerns.

The main direction of the further development of this technique is related to its prospec-
tive integration into Ontology-Based Software Engineering (OBSE) framework [HeO05,
Ba(7a]. Actually, generic quality models (like ISO 9126-1 model) are very close to on-
tologies (e.g., by their organization, lifecycle and usage). The natural next step is to ac-
tually define quality ontology (or the set of ontologies) representing the external driving
forces of a software process and use these ontologies along with domain and process
ontologies to drive the software process as required by the OBSE approach.

Acknowledgements. The authors wish to thank Denis Knjazhev for his help in imple-
menting the prototype for QAPMTool.

Bibliography

[Ba07a] Bachmann, A.; Hesse, W.; RuB3, A.; Kop, Ch.; Mayr, H.C.; Vohringer, J.: A Practical
Approach to Ontology-based Software Engineering. In: Proc. EMISA 2007, pp.129-142.

[Ba07b] Al Balushi, T.; Sampaio, P.; Dabhi, D.; Loucopoulos, P.: ElicitO: A Quality Ontology-
Guided NFR Elicitation Tool. In: Proc. REFSQ’07. Springer, 2007.

[Ca05] Carvallo, J.P.: Systematic Construction of Quality Models for COTS-based Systems.
PhD Thesis. Universitat Politécnica de Catalunya, Barcelona, 2005.

[Ca07] Cachero, C. et al.: Towards a Quality-Aware Engineering Process for the Development
of Web Applications. Working Papers of Faculty of Economics and Business Admini-
stration, 07/462, Ghent University, Belgium, 2007.

36

[CIR06] Cazzola, W.; Jezequel, J.-M.; Rashid, A.: Semantic Join Point Models: Motivations,

[Ch00]
[Cho6]
[Ch07]
[FC03]
[Fi03]
[Fi05]
[Fi06]
[FP97]

[G107]
[He05]

[1S01]
[Ko02]

[KMO98]

[KMO02]

Notions and Requirements. In: Proc. SPLAT’06, Bonn, 2006.

Chung, L; Nixon, B.; Yu, E.; Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer, 2000.

Chitchyan, R., Sampaio, A. et al.: Initial Version of Aspect-Oriented Requirements En-
gineering Model, AOSD-Europe report (D36): AOSD-Europe-ULANC-17, 2006.
Chitchyan, R., Rashid, A., Rayson, P., Waters, R.: Semantics-based Composition for
Aspect-Oriented Requirements Engineering. In: Proc. AOSD’07, ACM, 2007.

Franch, X.; Carvallo, J.P.: Using Quality Models in Software Package Selection. IEEE
Software, 20(1), 2003.

Firesmith, D.: Using Quality Models to Engineer Quality Requirements. J. of Obj. Tech-
nology, 2(5), 2003, pp. 67-75.

Firesmith, D.: Quality Requirements Checklist. J. of Obj. Technol., 4(9), 2005, pp. 31-
38.

Filman, R.; Elrad, T.; Clarke, S.; Aksit, M.: Aspect-Oriented Software Development.
Addison-Wesley, 2006.

Fenton, N.; Pfleeger, S.: Software Metrics: A Rigorous and Practical Approach. 2™ ed.
PWS Publishing, Boston, 1997.

Glinz, M.: On Non-Functional Requirements. In: Proc. RE’07, IEEE, 2007.

Hesse, W.: Ontologies in the Software Engineering Process. In: Proc. EAI Workshop,
2005.

ISO/IEC 9126-1, Software Engineering — Product Quality — Part 1:Quality model, 2001.
Kop, Ch.: Rechnergestiitzte Katalogisierung von Anforderungspezifikationen und deren
Transformation in ein konzeptuelles Modell. Doctoral thesis, Univ. Klagenfurt, 2002.
Kop, Ch.; Mayr, H.C.: Conceptual Predesign — Bridging the Gap between Requirements
and Conceptual Design. In: Proc.ICRE’98, 1998.

Kop, Ch.; Mayr, H.C.: Mapping Functional Requirements: From Natural Language to
Conceptual Schemata. Proc. SEA'02, 2002, p. 82-87.

[KMZ04]Kop, Ch.; Mayr, H.C.; Zavinska, T.: Using KCPM for Defining and Integrating Domain

[Me06]

[Me07]

Ontologies. WISE 2004 Workshops, LNCS 3307, Springer, 2004, p. 190-200.

Meier, S.; Reinhard, T.; Seybold, C.; Glinz, M.: Aspect-Oriented Modeling with Inte-
grated Object Models. Proc. Modellierung 2006, GI-Edition, 2006, p. 129-144.

Meier, S.; Reinhard, T.; Stoiber, R.; Glinz, M.: Modeling and Evolving Crosscutting
Concerns in ADORA. In: Proc. Early Aspects at ICSE Workshop, 2007.

[MRAOS]Moreira, A.; Rashid, A.; Araujo, J.: Multi-Dimensional Separation of Concerns in Re-

[Ni02]
[0199]
[Sh06]
[Si97]

[SK05]
[Sy06]

[TPO3]

quirements Engineering. In: Proc. RE’2005, IEEE, 2005.

Niba, L.C.: The NIBA workflow: From textual requirements specifications to UML
schemata. In: Proc. ICSSEA'02, Paris, 2002.

Olsina, L.: Web-site Quality Evaluation Method: a Case Study on Museums. In: ICSE
99 - 2nd Workshop on Software Engineering over the Internet, 1999.

Shekhovtsov, V.; Kostanyan, A.; Gritskov, E.; Litvinenko, Y.: Tool Supported Aspec-
tual Predesign. In: Proc. ISTA'2006, LNI P-84, GI-Edition, 2006, p. 153-164.

Siakas, K. et al.: The Complete Alphabet of Quality Software Systems: Conflicts and
Compromises. In: WCTQ & Qualex’97, 1997, p.. 603-618.

Shekhovtsov, V.; Kostanyan, A.: Aspectual Predesign. In: Proc. ISTA'2005, LNI P-63,
GI-Edition, 2005, p. 216-226.

Suryn W. et al.: Software Quality Engineering — where to find it in Software Engineer-
ing Body of Knowledge (SWEBOK). In: Proc. ISQM & INSPIRE, 2006.

Trendowicz, A.; Punter, T.: Quality Modeling for Software Product Lines. In: QA-
OOSE’03 Workshop, Darmstadt, 2003.

37

