
Building More Secure Commercial Software:
The Trustworthy Computing Security Development

Lifecycle

Steven B. Lipner
Microsoft Corporation

With the growth of the Internet as a vehicle for commercial, governmental, and
personal communications and information sharing, the importance of providing
trustworthy computing facilities that will resist hostile attack has grown
dramatically. In response to this growing need, Microsoft has developed the
Trustworthy Computing Security Development Lifecycle (SDL), an integrated
process for improving the security of commercial software as it is being developed.
This paper describes the phases of the SDL from initial requirements definition
through the Final Security Review before software release, and summarizes some
of the improvements in security demonstrated by software that has completed the
SDL.

Introduction

It is imperative that all software vendors address security threats. Security is a core
requirement for software vendors, driven by market forces, the need to protect critical
infrastructures, and the need to build and preserve widespread trust in computing. A
major challenge for all software vendors is to create more secure software that requires
less updating through patches and less burdensome security management.

For the software industry, the key to meeting today’s demand for improved security is to
implement repeatable processes that reliably deliver measurably improved security.
Therefore, software vendors must transition to a more stringent software development
process that focuses, to a greater extent, on security. Such a process is intended to
minimize the number of security vulnerabilities extant in the design, coding, and
documentation and to detect and remove those vulnerabilities as early in the
development lifecycle as possible. The need for such a process is greatest for enterprise
and consumer software that is likely to be used to process inputs received from the
Internet, to control critical systems likely to be attacked, or to process personally
identifiable information.

There are three facets to building more secure software: repeatable process, engineer
education, and metrics and accountability. This document focuses on the repeatable
process aspect of the SDL, although it does discuss engineer education and provide some
overall metrics that show the impact to date of application of a subset of the SDL.

21

If Microsoft’s experience is a guide, adoption of the SDL by other organizations should
not add unreasonable costs to software development. In Microsoft’s experience, the
benefits of providing more secure software (e.g., fewer patches, more satisfied
customers) outweigh the costs.

The SDL involves modifying a software development organization’s processes by
integrating measures that lead to improved software security. This document
summarizes those measures and describes the way that they are integrated into a typical
software development lifecycle. The intention of these modifications is not to totally
overhaul the process, but rather to add well-defined security checkpoints and security
deliverables.

This document outlines, at a very high level, the concepts of the SDL, shown in Figure 1.

Final
Security
Review

Security
Servicing

&
Response
Execution

Prepare
Security

Response
Plan

Security
Push

Security Kickoff
&

Register
With SWI

Use Security
Development Tools

&
Security Best

Dev & Test PracticesThreat
Modeling

Security
Design
Best

Practices

Create
Security

Documentation
And Tools
For Product

Security Training

Pen Testing

Security
Architecture

& Attack
Surface Review

Requirements Design Implementation Verification Release Support & Servicing

Figure 1: SDL Improvements to the Microsoft development process.

The Security Development Lifecycle Process

An organization that seeks to develop secure software must take responsibility for
ensuring that its engineering population is appropriately educated. At Microsoft, all
personnel involved in developing software must go through yearly “security refresher”
training.

Requirements Phase

The need to consider security “from the ground up” is a fundamental tenet of secure
system development. During the requirements phase, the product team makes contact
with the central security team to request the assignment of a security advisor who serves
as point of contact, resource, and guide as planning proceeds. The security advisor
assists the product team by reviewing plans, making recommendations, and ensuring that
the security team plans appropriate resources to support the product team’s schedule.
The security advisor remains the product team’s point of contact with the security team
from project inception through completion of the Final Security Review and software
release.

22

The requirements phase is the opportunity for the product team to consider how security
will be integrated into the development process, identify key security objectives, and
otherwise maximize software security while minimizing disruption to plans and
schedules. As part of this process, the team needs to consider how the security features
and assurance measures of its software will integrate with other software likely to be
used together with its software.

Design Phase

The design phase identifies the overall requirements and structure for the software.
From a security perspective, the key elements of the design phase are:

• Define security architecture and design guidelines: Define the overall structure
of the software from a security perspective, and identify those components
whose correct functioning is essential to system security.

• Document the elements of the software attack surface. Given that software will
not achieve perfect security, it is important that only features that will be used
by the vast majority of users be exposed to all users by default, and that those
features be installed with the minimum feasible level of privilege.

• Conduct threat modeling. Using a structured methodology, the threat modeling
process identifies threats that can do harm to each asset and the likelihood of
harm being done (an estimate of risk), and helps identify countermeasures that
mitigate the risk.

Implementation Phase

During the implementation phase, the product team codes, tests, and integrates the
software. Steps taken to remove security flaws or prevent their initial insertion
significantly reduces the likelihood that security vulnerabilities will make their way into
the final version of the software.

The elements of the SDL that apply are:

• From the threat model task, understand which are the high-risk components.

• Apply coding and testing standards.

• Apply security testing tools including fuzz testing tools.

• Apply static-analysis code scanning tools.

• Conduct security code reviews.

23

Verification Phase

The verification phase is the point at which the software is functionally complete and
enters beta testing. Microsoft introduced the security push during the verification phase
of Windows Server 2003 and several other software versions in early 2002. The main
purpose of the security push is to review both code that was developed or updated during
the implementation phase and “legacy code” that was not modified.

Release Phase

During the release phase, the software should be subject to a Final Security Review
(“FSR”).

The FSR is an independent review of the software conducted by the central security team
for the organization. Tasks include reviewing bugs that were initially identified as
security bugs, but on further analysis were determined not to have impact on security, to
ensure that the analysis was done correctly. An FSR also includes a review of the
software’s ability to withstand newly reported vulnerabilities affecting similar software.
An FSR for a major software version will require penetration testing and, potentially, the
use of outside security review contractors to supplement the security team.

Support and Servicing Phase

Despite the application of the SDL during development, state of the art development
practices do not yet support shipping software that is completely free from
vulnerabilities – and there are good reasons to believe that they will never do so.
Product teams must prepare to respond to newly-discovered vulnerabilities in shipping
software.

Part of the response process involves preparing to evaluate reports of vulnerabilities and
release security advisories and updates when appropriate. The other component of the
response process is conducting a post-mortem of each reported vulnerability and taking
action as necessary. Depending on the nature and severity of reported vulnerabilities,
this action may include repeating earlier phases of the process to address new threats.

Results of Implementing the Security Development Lifecycle at
Microsoft

It is premature for Microsoft to make conclusive claims that the SDL improves the
security of Microsoft software, but the results to date are encouraging.

Windows Server 2003 was the first operating system release at Microsoft that
implemented large portions of the SDL. Figure 2 shows the number of security bulletins
and the severity of each bulletin issued within the year after release for the two most
recent Microsoft server operating systems: Windows 2000 and Windows Server 2003.

24

Figure 2: Windows pre- and post-SDL Critical and Important Security Bulletins

The SQL Server and Exchange Server product teams each conducted a security push
(including threat modeling, code reviews, and security testing) before releasing a service
pack. The results of the SQL Server security push were incorporated in SQL Server 2000
Service Pack 3, and the results of the Exchange Server security push were incorporated
in Exchange 2000 Server Service Pack 3. Figures 3 and 4 shows the numbers of security
bulletins released in equal periods before and after the release of the respective service.

62

24

0

10

20

30

40

50

60

70

Windows 2000 (pre-SDL) Windows Server 2003 (SDL)

25

Figure 3: SQL Server 2000 pre- and post-SDL Security Bulletins

Figure 4: Exchange Server 2000 pre- and post-SDL Security Bulletins

Another encouraging example is the Internet Information Server component of Windows
Server 2003 (IIS 6); in the two years since its release; Microsoft has issued one security
bulletin affecting the Web server, and this was in a component that is not installed by
default.

8

2

0

1

2

3

4

5

6

7

8

Exchange Ser ver 2000(pr e-SDL) Exchange Ser ver 2000(SDL)

16

3

0

2

4

6

8

10

12

14

16

SQL Ser ver 2000 (pr e-SDL) SQLSer ver 2000(SDL)

26

Conclusions

Microsoft’s experience indicates that the SDL is effective at reducing the incidence of
security vulnerabilities. Initial implementation of the SDL (in Windows Server 2003,
SQL Server 2000 Service Pack 3, and Exchange 2000 Server Service Pack 3) resulted in
significant improvements in software security, and subsequent software versions,
reflecting enhancements to SDL, appear to be showing further improvements in software
security.

Incremental implementation of the elements that comprise SDL has yielded incremental
improvements, which we view as one sign of an effective process. The process is not
perfect, and is still evolving – and is unlikely either to reach perfection or to cease
evolving in the foreseeable future.

The development and implementation of the Security Development Lifecycle represent a
major investment for Microsoft, and a major change in the way that software is designed,
developed, and tested. The increasing importance of software to society emphasizes the
need for Microsoft and the industry as whole to continue to improve software security;
therefore, both this paper on the SDL and books on specific techniques have been
published in an effort to share Microsoft’s experience across the software industry.

References

Lipner, Steve and Michael Howard, “The Trustworthy Computing Security Development
Lifecycle” http://msdn.microsoft.com/security./sdl

Notices

The information contained in this document represents the current view of Microsoft
Corporation on the issues discussed as of the date of publication. Because Microsoft
must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of
any information presented after the date of publication.

This paper is for informational purposes only. MICROSOFT MAKES NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE
INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this document may be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Microsoft Corporation.

27

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as
expressly provided in any written license agreement from Microsoft, the furnishing of
this document does not give you any license to these patents, trademarks, copyrights, or
other intellectual property.

© 2005 Microsoft Corporation. All rights reserved. Certain portions of this paper are ©
2004 Institute of Electrical and Electronics Engineers, Incorporated. All rights reserved.

Microsoft, MSDN, Windows, and Windows Server are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

28

