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A Dense Statistical Model of Facial Soft Tissue Thickness

Thomas Gietzen1, Robert Brylka1, Ulrich Schwanecke1 and Elmar Schömer2

Abstract: Ambient intelligence become more and more ubiquitous and help people achieving a more
natural interaction with their electronically enhanced environment. One vital natural interface between
humans and ambient intelligence are embodied conversational agents. Thereby, the acceptance of
these virtual characters is all the greater, the more natural they look and behave. Since humans pay
particular attention to the face, a natural-looking animation of the face is very important. In this paper
we present a dense statistical model of facial soft tissue thickness that can be used to build accurate
physics-based facial animations. The presented model not only can help to generate more natural
facial animations of virtual characters but also can be used in other research domains such as forensic
anthropology or medicine. Especially in the field of dentistry and orthodontics in particularly younger
people and children are increasingly examined using X-ray technology. Thereby more and more
volumetric images are generated, which further increase cost as well as the induced radiation dose.
Here, for example, our statistical model can provide the basis for a new volumetric reconstruction
process of a human’s facial bones in a cost-effective manner and with low radiation exposure.

Keywords: 3D volume registration; ambient intelligence; conversational agents; facial soft tissue
thickness; lateral cephalogram; medical imaging; statistical model

1 Introduction

Facial soft tissue thickness (FSTT) is determined by measuring the distance between the skin
surface and the underlying skull bones. FSTT plays an important role in medical diagnosis
and therapy. A thorough review of soft tissue depth studies and their applications is given
by [SS08]. Soft tissue depth studies are based on a variety of measurement techniques
such as needle puncture, ultrasound, computed tomography (CT) or magnetic resonance
imaging (MRI). Thereby, besides the different measurement technics the variation of the
direction in which FSTT is measured (based on the normals on the bones or skin surfaces or
oriented towards other soft tissue features) have led to greatly varying results which are hard
to compare. Additionally, most medical studies determine and use FSTT only at various
predefined medical landmarks.

Beside medicine, statistics about FSTT can be used in forensic anthropology for craniofacial
reconstruction, i.e. for reconstructing the morphology of a particular face, if only a skull is
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given or in physics-based facial animation of virtual characters that can serve as embodied
conversational agents. Thereby, it is important to have a dense map of the FSTT and not only
information about some predefined medical landmarks. Further, a dense statistical model of
the FSTT is used to determining a coarse volumetric reconstruction of the human’s facial
bones having only an optical face scan as input.

In this paper we present an approach for the automatic generation of a dense statistical
model of the FSTT based on CT data of the human head. We generate the statistical model
by registering a volumetric template model of the skull3 into each CT data set and determine
the FSTT for any vertex of the template skull. Previous approaches to register a template
skull into CT data, such as [SK15] concentrate on aligning the upper and back part of the
skull (neurocranium). They are not appropriate to register the fine structure of the facial
bones. Our main contribution is a dense statistical model of FSTT based on a new method
for fine registration of a template skull to the facial bones of a skull extracted from CT data.

2 Generating a volumetric model from a single lateral cephalogram
Beside the generation of physics-based facial animations of virtual characters, we are
interested in a new method for determine the exact surface of the facial bones with minimal
radiation exposure. Thereby, we will use three main inputs (see fig. 1): a) a single lateral
cephalogram, b) an optical face scan, and c) the statistical model of the FSTT.
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Fig. 1: Low radiation exposure based volumetric reconstruction process.

A lateral cephalogram (LC) is an X-ray taken from the side of a patient. It is usually used
to determine the relationship between top and bottom jaw (maxilla and mandible), i.e. to
assess the nature of a patient’s bite. A LC has only minimal perspective distortions and
therefore contains suitable information about the soft tissue thickness on the facial midline.

Optical face scanning provides an exact 3D model of the skin surface. While various
commercial solutions such as Agisoft PhotoScan or Autodesk Recap exist to generate 3D
spatial data from a variety of digital images, we use a self-developed passive scanning
system tailored to the requirements of our reconstruction process [Gr17].

The two measurements described above (lateral cephalogram and face scan) are not sufficient
to reconstruct the facial skull. Thus, in order to reconstruct the facial skull, we will later
combine both information using the dense statistical model of FSTT presented in this paper.
3 Based on the model www.turbosquid.com/3d-models/3d-human-skull/691781
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A Dense Statistical Model of Facial Soft Tissue Thickness 3

3 Generating a dense statistical model

The construction of the statistical model is based on CT data sets of the human head. An
overview of the data processing pipeline is depicted in figure 2. It starts with a preprocessing
step normalizing the information in the CT data and extracting triangular meshes of the
skin surface and the skull. Next, a volumetric template skull is registered into this data.
This results in a fine registered template skull. Finally, the mean and standard deviation of
the FSTT of all vertices of the template skull based on the Hausdorff distance between the
deformed template skulls and each of the extracted skin surfaces is determined.

CT Data Sets

Skulls
DICOM

POLY

DATA

Registered 

Template Skulls

Template Skull Statistical Model

POLY

DATA

Skin Surfaces

REGISTRATION

STATISTICAL

EVALUATION
PREPROCESSING

POLY

DATA

Fig. 2: Processing pipeline for generating the statistical model of FSTT.

3.1 Preprocessing the CT data sets

To extract exact polygonal meshes of the skin surface and the skull from a given CT data
set of the head a preprocessing step is needed. In this step the data is cropped below the
mandibular bone. In order to determine the CT slice containing the most inferior point of
the mandibular (see figure 3) we first smooth each slice and then generate a binary image
with a threshold representing bones in Hounsfield units. Next, we choose the slice sj with
j = arg maxi=2,...,#slices |yi − yi−1 | where yi is the number of the first non-zero row in slice
number i and add an offset to include the skin surface of the chin.

x

y

x

y

y

z

slice i slice i-1

Fig. 3: Determination of the cropping position based on detection of the mandibular bone.

Once we found the cutting slice and cropped the volumetric data, we extract polygonal
meshes of the skin surface and the skull using the Marching Cubes algorithm [LC87]. The
skull mesh is cleaned from unwanted parts such as the spin using a connectivity filter with
seed points being the first appearance of bone structure in the CT data sets representing the
cranium and the found point on the mandibular bone. Finally all skull meshes are decimated

A Dense Statistical Model of Facial Soft Tissue Thickness 893
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to a common point density, surface normals are generated and internal bone structures are
removed by determining all vertices that are not visible from the outside of the skull.

3.2 Template skull registration

The registration of the template skull to an extracted skull consists of two main stages: 1.
an initial rigid transformation of an extracted skull to the template skull and 2. an elastic
transformation in which we deform the template skull into the extracted one.

Initial alignment

The initial alignment of the template skull with the CT data starts with a coarse registration
step using the Fast Global Registration (FGR) algorithm presented in [ZPK16]. We choose
this algorithm as a global alignment approach because it does not need an initialization step
and works well on noisy and only partially overlapping 3D surfaces.

Figure 4a shows the template skull (white) and an extracted skull (cyan) in initial position
(defined by the CT) and the correspondences between the candidate matches. As depicted
in figure 4b the FGR algorithm provides already a very good alignment. Nevertheless, we
perform a second alignment step applying a rigid transformation with standard ICP, which
results in a significant improvement of the alignment quality as shown in figure 4c.

(a) (b) (c)

Fig. 4: Initial alignment steps: a) original configuration given by CT position, b) registration
with FGR algorithm, c) ICP based refinement.

Deformation

In the second stage we perform a fine registration of the template skull into the extracted
skull. Therefore, we morph our template skull into the extracted skull using ShapeOp [De15].
ShapeOp is a physics solver that integrates a variety of constraints especially projective
constraints, dynamics and handle-based shape space exploration. ShapeOp can be used
with a variety of geometry representations as point clouds, polygon meshes or tetrahedral
meshes. To simulate the volume of the skull bones we use a tetrahedral mesh representation
of our template skull as an input to the solver. The deformation steps based on weighted
correspondences between points on the tetrahedral mesh and points which are on or close
to the extracted skull. The weighting determines how strongly a point correspondence
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effects the deformation. Figure 5 shows our deformation pipeline, which consists of several
deformation steps with different approaches to find point correspondences.
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Fig. 5: Deformation pipeline with various approaches for correspondence search.

Closest (curvature) point correspondences. Point correspondences between meshes
which are already close to each other can be determined based on the distance between
points. Especially for complex shapes such as the facial skull this approach often leads
to false correspondences. We therefore extend the correspondence search with additional
constraints depending on the deformation step. Generally speaking, we restrict the search
by a maximum distance and a minimum normal deviation constraint.

In the primary deformation steps where the meshes are far apart we additionally restrict the
candidates for closest correspondence to points with high curvature value (closest curvature
correspondences). Figure 6a shows the correspondence matches for curvature points (for
the sake of clarity only the mandible is displayed). Nevertheless these constraints do not
prevent wrong correspondence matches as shown in 6c and 6d. In addition, we check any
estimated closest curvature correspondence match for their similarity given by a Fast Point
Feature Histogram [RBB09] (FPFH). A FPFH encodes geometrical properties in a point
k-neighborhood by generalizing the mean curvature around this point and provide more
information than the normals deviation check. With this constraint it is possible to limit
wrong correspondences as visualized in 6e.

(a) (b) (c) (d) (e)

Fig. 6: Closest curvature correspondences: a) example of correspondence matches for points
with high curvature value; b),c),d) correspondence mismatch on a challenging part as the
mandible foramen; e) correspondence mismatch elimination with a FPFH similarity check.

Unfortunately, after initial alignment some parts of the template skull are still too far away
from an extracted skull for a closest point correspondence search which hampers a good
deformation. Thus, we introduce a new hierarchical approach to reliably determine point
correspondences.

A Dense Statistical Model of Facial Soft Tissue Thickness 895
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Hierarchical ICP correspondences. In order to find more correct correspondences for
the first deformation step we introduce a hierarchical ICP approach fitting individual parts
of the template skull. As shown in 7a (middle) we use the template skull without the
skullcap (calvaria) since most of the CT data sets do not include this part. We register
the hierarchically divided parts into the extracted skull using a similarity transformation.
Since the smallest parts in our hierarchy might include overlapping sections we additionally
provide a priority list for any point and use only the points with highest priority. Figure 7a
shows a few examples of the hierarchical divided parts and demonstrates the priority coding
for the five priorities going from yellow for low priority up to red for high priority. Dark
gray marks the additional priority zero which excludes points from being considered in the
deformation step at all.

The priority of any point is used as a weight in the following deformation step. Figure 7b
shows an example of the result for the hierarchical ICP fitting the orbit parts. Since the
topology between the tetrahedral representation and the template skull parts is not the same
we compute the correspondences using the closest point constraint, considering only points
whose curvature value is greater than a defined threshold (figure 7a blue colored points).
Based on these correspondences we perform the first deformation step. After this step we
continue with an additional closest curvature correspondence search between template skull
and extracted skull and subsequent deformations based on those correspondences.

(a) (b)

Fig. 7: Hierarchical ICP: a) overview of the facial skull bones hierarchy used by the
correspondence search, b) example of the hierarchical registration for the orbit parts.

Points of interest correspondences. Even the described FPFH constraint can not prevent
for inaccurate correspondence matches which lead to excessive mesh distortion after a
few deformation steps (see figure 8a, b). To prevent this shape degradation we introduce a
deformation step based on predefined points of interest (see figure 8). After one deformation
step with our hierarchical ICP approach and several deformation steps based on closest
curvature correspondences we use our undeformed volumetric template skull and deform it
into the current interim result. Figure 8d shows a close view of the mandible part and the
correspondence matches based on the points of interest. Figure 8e depicts the result of the
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deformation step based on this approach. With this deformation step we get a deformed
template which is a little less aligned to the extracted skull but much smoother than it was
after the deformation step before (see figure 8f). We perform this deformation step several
times during the deformation pipeline considering more and more points of interest in every
iteration as colored encode in figure 8c and finally use all points in the last deformation step.

(f)(e)(d)(c)(b)(a)

Fig. 8: Points of interest correspondences: a) interim result of template registration, b) mesh
distortion at the mandibular notch, c) points of interest used for correspondence search, d)
correspondence matches between an undeformed template (wireframe) and a distorted one,
e), f) result of the deformation based on points of interest.

Dense statistical model

In order to determinate the FSTT we calculate the Hausdorff distance between the deformed
template skull and the extracted skin surface for each data set. We create the statistical
model by computing a mean skull based on all deformed skulls and determine the mean and
the standard deviation of the Hausdorff distances for any point of the deformed template
skulls. Currently, our statistical model is based on 40 different Caucasians (23 males and 17
females) with a mean age of 28. The age of the subjects vary between 17 and 35 years4.

SD of FSTT  (mm)Mean FSTT (mm)

250 81

(b)(a)

Fig. 9: Statistical model of the FSTT on a mean skull: a) Mean FSTT, b) Standard deviation.

A skull with color encoded mean and standard deviation of soft tissue thicknesses is depicted
in figure 9. The statistics for predefined landmarks used in literature is shown in figure 10.

4 This work is funded by the Federal Ministry of Education and Research (BMBF), grant No. IngenieurNachwuchs
03FH029IX5. We gratefully acknowledge the Department of Diagnostic and Interventional Radiology, University
Medical Center of the Johannes Gutenberg University Mainz, Germany for providing us with the DICOM-data.
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Fig. 10: Mean and standard deviation values of FSTT on predefined medical landmarks.
Note that all measurements fall into the range presented in [SS08].

4 Conclusion and Future Work

We presented a method to generate a dense statistical model of the FSTT based on CT
data and a volumetric skull template. Thereby, the values obtained on predefined medical
landmarks (see figure 10) match the measurements presented in [SS08]. Next, together with
medical experts, we will carefully examine the accuracy of our model. We will also use the
statistics to gain more accurate physics-based facial animations and to combine a single
lateral cephalogram and a face scan to obtain a volumetric reconstruction of the facial skull
as described in section 2.
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