Towards Safe and Secure Organic Computing Applications *

Matthias Giidemann, Florian Nafz, Wolfgang Reif, Hella Seebach

Lehrstuhl fiir Softwaretechnik und Programmiersprachen
Universitdt Augsburg
D-86135 Augsburg, Germany

{guedemann, nafz, reif, seebach}@ informatik.uni-augsburg.de

Abstract: In this paper we present our ongoing work on “Organic Computing”. We
present an illustrative case study from program automation that uses OC-paradigms to
be failure tolerant and to produce effectively. We present a way to build and verify a
formal model of a self-adaptive system. We also give further ideas for formal mod-
eling and our ideas of safety analysis of such systems. Another topic is how to build
descriptive models and devising development processes for them.

1 Introduction

Many of today’s systems are designed and implemented in a rather static way. A chang-
ing environment and meeting changing requirements brings forth the need for extensive
changes in those systems. Critical systems are made failure tolerant by introducing redun-
dancy in many components which in turn often increases space and cost requirements.

A new approach to address these points is to design Organic Computing systems, which
have nature inspired paradigms. These include the so called “self-x properties”. These
properties are used to allow systems to change themselves or their mode of operation if
required.

On the other hand, these desirable properties give rise to new challenges, as new meth-
ods for modeling, developing, description and verification of these systems have to be
devised. We focus on developing descriptive modeling and verification techniques for Or-
ganic Computing systems. We are convinced that these are needed to assure acceptance
especially in safety critical applications like avionics, automotive and production automa-
tion.

An illustrative case study from production automation is presented in Sect. 2, an overview
on formal modeling thereof is given in Sect. 3, Sect. 4 gives an overview on current work
on safety analysis and Sect. 5 gives an outlook on ideas for descriptive modeling of adap-
tive systems.

*This research is partly sponsored by the priority program “Organic Computing” (SPP OC 1183) of the
German research foundation (DFG)

153

2 Case Study

The case study describes an automated production cell which is self-organizing in case of
failures and adaptive to changing goals. It consists of three robots, which are connected
with autonomous transportation units.

2.1 Description

In the production cell every robot can accomplish three tasks: drilling a hole in a work-
piece, inserting a screw into a drilled hole and tightening an inserted screw. These tasks
are done with three different tools that can be switched. Every workpiece must be pro-
cessed by all three tools in the given order (drill, insert, tighten = DIT). Workpieces are
transported from and to the robots by autonomous carts. Changing the tool of a robot
is assumed to require some time. Therefore the standard configuration of the system is
to spread out the three tasks between the three robots, and the carts transfer workpieces
accordingly (see Fig. 1).

unprocessed processed
workpieces , drill tighten workpieces
y S
—_— TV ey
&2 ‘ .
[-
insert
rd
.
<
-

Figure 1: Valid configuration of robot cell

2.2 Self-Adaptation

The first interesting new situation occurs when one or more tools break and the current
configuration allows no more correct DIT processing of the incoming workpieces. In
Fig. 2 the drill of one robot broke and DIT processing is not possible, as no other robot is
configured to drill.

However, it is obvious that this is not really a problem, as the robots have three tools and
can switch to another tool if one breaks. So it should be possible for the adaptive system
to detect this situation and reconfigure itself in such a way that DIT processing is possible
again. This implies that at least one other robot also has to switch its tool, so that all three
tools are available again.

This can be resolved as shown in Fig. 3. Now the left robot drills, the right robots tightens
the screws and the middle robot is left unchanged. For this error resolution, not only the
assignment of the tasks to the robots must be changed, but also the routes of the carts and

154

unprocessed DIT processing ~ Processed tiaht il unprocessed
workpieces P tighten «_ impossible workpieces - ighten - workpieces
—_ Ty — 1 T —
K y 2 L
- - ®
insert @/ insert
o d
\ 3 / 1-
2 y. 2
A B SN, B s
Figure 2: Temporary hazard due to broken drill Figure 3: Reconfigured robot cell

the direction of the incoming and outgoing workpieces. If only the tools were switched,
the processing of all tasks would be possible, but not in the correct order.

The cell can also exhibit other self-x properties like self-optimization, if additional robots
are introduced. Another property would be self-adaption as graceful degradation. These
are explained in [].

3 Formal Model

Our accomplished and ongoing work focuses mainly on formal modeling of self-adaptive
systems. The adaptive principles require special modeling techniques. Nevertheless we
were able to do an initial modeling of our example case study using a technique similar
to traditional modeling methods. Nevertheless for bigger modeling tasks an approach
especially for Organic Computing should be developed.

3.1 Restore-Invariant Approach

We see a run of an adaptive system, as exemplified by the adaptive production cell, sepa-
rated into production phases and reconfiguration phases. We define an invariant that must
hold as to allow correct production. Whenever this invariant is violated, a reconfiguration
is triggered that restores the invariant as long as this is possible. We call this approach
“restore-invariant” | 1.

Its major advantage is that it allows abstraction from an actual reconfiguration algorithm,
thus modularizing the modeling and supporting our top-down design approach. Although
this may somehow constrict some self-x properties and emergent behaviour [1,
it may be required for proving functional properties in safety critical systems [1.
The reconfiguration algorithm is just specified via requirements. If a specific reconfigura-
tion algorithm is designed, proving it correct against the specification is sufficient for the
correctness of the whole system.

155

3.2 Formalization and Verification of Case Study

We give a short overview of the formalization of the adaptive production cell, a more

detailed version can be found in []. The system is modeled as transition automata
for the Cadence SMV model checker [] using CTL (computational tree logic) and
LTL (linear time logic) [].

The cell is the product automaton of the corresponding automata of the robots, the work-
pieces and the autonomous carts. The robots consist of one transition system, indicating
the state of the robot. The workpieces consist of two transition systems, one for the po-
sition and the other for the state of the workpiece, i.e. which task has already been com-
pleted. The carts are modeled by three automata, one for the position of the cart, one for
its configuration (between which robots its tour is) and one for its state (loaded, idle, head-
ing back). The reconfiguration is modeled as control automaton that sends configuration
commands to both the robots and the autonomous carts. Additionally, failure automata are
defined for every tool of every robot that is in state yes if the corresponding tool fails or in
state no if the corresponding tool is usable.

For the model we defined several predicates that appear in the following propositions.
The predicates robotConf and cartConf indicate that the robots, respective the carts are
configured, ditCapable and cartCapable indicate that this configuration is correct, i.e.
allows DIT processing and correct transportation of workpieces. To express failures we
defined ditPossible which indicates that DIT processing is still theoretically possible and
ditFailure which is true if a robot is configured for a task it can no more perform due to
tool failure.

The reconfiguration algorithm is specified using the following two LTL properties that
assure that a reconfiguration is correct, as long as a correct reconfiguration is still theoret-
ically possible.

confDIT = G ((robotConf A cartConf) —
ditCapable N cartCapable) (1)

confCorrect = G ((Control = EndReconf) —
X (ditPossible — —dit Failure)) (2)

The confDIT property assures that whenever the robots and carts are configured, this con-
figuration allows DIT processing. When the control has just finished a reconfiguration, i.e.
Control = EndRecon f then confCorrect assured that this configuration has not assigned
a task to a robot it cannot accomplish due to a failure of a tool. All functional properties
were proven under the assumption of confDIT and confCorrect 1.

There exist several approaches for formal modeling of agent oriented systems e.g. [,
]. Although our system is not an agent-oriented one, it fulfills some of the character-

izing aspects of those []. Nevertheless these papers do not focus on failure tolerance.

A self-optimizing agent oriented system based on load balancing is presented in [].

156

3.3 A Logic for Proving Self-x Properties

In the special case of our production cell the formalization was done by traditional tech-
niques and by hand. For further examples the formalization, especially of the self-x prop-
erties, has to be done by hand again. There are two ways to improve the formalization
process. The first is a generic translation of the system which results in a lot of explicit
formulae. The model can be hard to read for the verifier, what makes error detection diffi-
cult. The second is to develop a calculus and a logic with special operators for expressing
self-x properties and preserving the structure of the system. As an advantage the formal-
ization of the system would be more readable and more intuitive for the verifier. Especially
for interactive verification it would be more comfortable. For example, in the case study
above a desired property is: “the cell always produces correctly unless a reconfiguration
takes place”. In a logic for self-x this property could have a simple form like

CELL =ggconr O PROD 3)

This could be read as: “’the system CELL fulfills (=), that it is always in production mode
PROD unless a reconfiguration (RECONF) takes place”.

Another example for using an operator is to express that the cell will produce as long
as there are enough workpieces available and a reconfiguration phase can provide self-
healing. But also properties like “’the cell is producing until x happens” or "after n program
steps the reconfiguration process is finished and the cell produces again” are interesting.

The system model of the production cell is given as a transition system. The examination
of the case study showed that a temporal logic for describing the proof obligations is
suggestive. In this case the proof obligations were expressed in CTL []. Butalsoa
linear temporal logic is conceivable. For systems with infinitely many states, where model
checking has its limits an interactive verification approach should be also considered.

4 Safety Analysis

For safety analysis, fault tree analysis (FTA) is used widely. Nevertheless it is unclear how
to formulate a fault tree for an adaptive system. The same problem exists with other more
traditional forms of safety analysis like FMEA (failure modes and effect analysis), DCCA
and GSPN (generalized stochastic petri-nets) as the system may recover from an occurred
hazard. The real hazard is occurring if there is no more possibility for recovery due to too
many failing components.

4.1 Deductive Cause Consequence Analysis

The deductive cause consequence analysis (DCCA) [] finds the relationship be-
tween failure as causes and hazards as consequences thereof. Its formalization guarantees

157

that the causes always happened before the hazards.

To conduct a DCCA we use a finite set A of failure modes §. The complete list of failure
modes can be found with failure sensitive specification [] or techniques like Ha-
zOp []. Assuming a hazard is marked as predicate H, we define a critical set ' C A
for a System SY S via the following CTL formula:

SYS | E (X until H) where \ := /\ -0 4)
se(A\T)

This formula states that a set of failure modes I is critical if there exists a run of the system
on which no other failure modes than those in I" occur until the hazard appears.

T" is a minimal critical set if no proper subset is critical. Criticality is monotonic wrt. set
inclusion. If the empty set is critical, then the system is functionally incorrect, that is even
if no failure is present, the hazard may occur. The completeness theorem of DCCA states
that if at least one failure from any minimal critical set can be avoided, then the hazard
H can not occur []. The resulting minimal critical sets are at least as good as the
resulting minimal cut sets from a FTA and can better even better although the fault tree
might be proven complete, i.e. FTA can be too pessimistic [].

To conduct DCCA, one can exploit the monotonicity of critical sets, i.e. if a set I has a
critical subset I then I is also critical. Therefore it is feasible to start DCCA from guessed
sets or from results of FTA and checking all possible subsets of A is not necessary.

4.2 DCCA for adaptive systems

We are working on extending the DCCA approach to be able to cope with adaptive sys-
tems. For this we must change the proof obligation of DCCA to support recovery from
hazards. The formula (4) does not correctly define a critical set, as recovery may be possi-
ble and only if the hazard stays permanently, a critical set is found. An extension of DCCA
will then require a proof of monotonicity and a proof of a completeness theorem.

If feasible, an extended DCCA for adaptive systems can provide a possibility for quali-
tative analysis, i.e. identifying the minimal critical sets and for quantitative analysis, i.e.
measuring the occurrence probability of the minimal critical sets.

The result of an extended DCCA may also be used to construct a “flat” fault-tree for the
analyzed system. This may be used directly for quantitative analysis or by transformation
to a GSPN [].

S Descriptive Modeling

Besides formal modeling and verification there is an adequate development process and
design method needed for safe and reliable Organic Computing applications, too.

158

Computer systems can be classified in traditional systems as already known in the last
decades, embedded systems which were an integral part of the research in the past few
years and Organic Computing systems which have now moved in the center of interest.
Many ways to design traditional systems exist already. The Unified Process, the V-Model
and a lot more processes are well known software development methodologies and also
modeling languages like UML exist for traditional systems. Embedded systems are more
complex because of their distribution. They are normally spread over a certain area. So
methodologies are needed which can handle this distribution. The newly revised V-Model
XT [] is already directed to analyze and design such systems. There are already
tools and methods (UML [1, ROOM [1, MARMOT [1) which support
the software design of embedded systems with their special properties. Our attention lies
on the designing of Organic Computing systems which the existing design-approaches
do not support and therefore these approaches must be enhanced or a new development
methodology evolved.

The systematic refinement of the enhanced development models should lead in the end
to the ability to control the whole system. As however in Organic Computing systems
system states might occur which could not be foreseen by the developer - which is con-
trary to the original top down design - the documents and models must in this place be
enhanced by constraints or assertions. The idea is that if the self-x properties act only in
this scope - which is defined by these constraints - the system will always meet the essen-
tial requirements as long as possible although the environment and tasks change or some
system components fail. When a constraint violation occurs, the possibility of interaction
with and the controlling of the system is given.

There exists already a couple of approaches for modeling Organic Computing systems and
their self-x properties. Tichy, Schilling and Giese [] have designed an approach for
self-managing dependable systems with UML and Fault Tolerance Patterns.

Kasinger and Bauer [] are modeling Organic Computing systems by using a model
driven architecture and an extended version of UML 2.0. With this approach they can
produce models for each system layer in the analysis and the design phase.

6 Conclusion

We presented our case study which we used for initial formal modeling of an Organic
Computing system. At the moment we are working on safety analysis based on this formal
model. We plan to extend DCCA to adaptive systems for this purpose.

To be able to model bigger examples we work on developing an extension to temporal logic
for supporting Organic Computing paradigms. Additional work will be on developing
descriptive modeling techniques for Organic Computing systems.

The changing structure of the system, inherent to Organic Computing systems, is the chal-
lenge for formal modeling techniques, even without taking emergent behavior into con-
sideration. The next steps will be finishing work on safety analysis and to abstract the
findings from the case study to more general forms of self-adaptive systems.

159

References

[BBDO4]

[BS94]

[BS00]

[Bus98]

[CPO6]

[EMCJ99]

[FGO4]

[Gor00]

[GORO6]

[Gro06]

[Kas05]

[KBS06]

[Kl1e86]

[McM90]
[MH95]

[MMBO03]

[MTO04]

[ORSO05a]

[ORSO05b]

S. Bernardi, A. Bobbio, and S. Donatelli. Petri Nets and Dependability. Lectures on
Concurrency and Petri Nets: Advances in Petri Nets, pages 125-179, June 2004.

G. Gullekson B. Selic, P. T. Ward. Real-Time Object Oriented Modeling. John Wiley
and Sons, 1994.

S. Bussmann and K. Schild. Self-Organizing Manufacturing Control: An Industrial
Application of Agent Technology, 2000.

S. Bussmann. Agent-Oriented Programming of Manufacturing Control Tasks, 1998.

P. Engrand C. Pecheur, R. Simmons. Formal Verification of Autonomy Models: From
Livingstone to SMV. In Agent Technology from a Formal Perspective, pages 103—113.
Springer Verlag, 2006.

D. A. Peled E. M. Clarke Jr., O. Grumberg. Model Checking. The MIT Press, 1999.

Frauenhofer-Gesellschaft. Method for Component-Based Real-Time Object-Oriented
Development and Testing, 2004.

D. F. Gordon. APT Agents: Agents That Are Adaptive, Predictable and Timely. In Pro-
ceedings of the First Goddard Workshop on Formal Approaches to Agent-Based Systems
(FAABS’00), 2000.

M. Giidemann, F. Ortmeier, and W. Reif. Formal Modeling and Verification of Sys-
tems with Self-x Properties. In Autonomic and Trusted Computing 2006, Proceedings.
Springer LNCS, 2006.

OMG Object Modeling Group. The Unified Modeling Language, 2006.

H. Kasinger. Ein MDA-basierter Ansatz zur Entwicklung von Organic Computing Sys-
temen (in German). Technical report, University of Augsburg, 2005.

Koordinierungs-und Beratungsstelle der Bundesregierung fiir Informationstechnik in
der Bundesverwaltung KBSt. Das neue V-Modell XT Release 1.2 - Der Entwicklungs-
standard fiir IT-Systeme des Bundes (in German), 2006.

T. A. Kletz. Hazop and HAZAN Notes on the Identification and Assessment of Hazards.
Technical report, Inst. of Chemical Engineers, Rugby, England, 1986.

K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1990.

J. McLean and C. Heitmeyer. High assurance computer systems: A research agenda,
1995.

A. Montresor, H. Meling, and O. Babaoglu. Towards Self-Organizing, Self-Repairing
and Resilient Large-Scale Distributed Systems. In Future Directions in Distributed Com-
puting - Research and Position Papers, pages 119-123, Bologna, Italy, 2003. Springer.

H. Giese M. Tichy, D. Schilling. Design of Self-Managing Dependable Systems with
UML and Fault Tolerance Patterns, 2004.

F. Ortmeier, W. Reif, and G. Schellhorn. Deductive Cause-Consequence Analysis
(DCCA). In Proceedings of IFAC World Congress, 2005.

F. Ortmeier, W. Reif, and G. Schellhorn. Formal safety analysis of a radio-based railroad
crossing using Deductive Cause-Consequence Analysis (DCCA). In Proceedings of
European Dependable Computing Conference EDCC, 2005.

160

