
Taking the Pick out of the Bunch −

Type-Safe Shrinking of Metamodels

Alexander Bergmayr1, Manuel Wimmer2, Werner Retschitzegger3, Uwe Zdun4

1Vienna University of Technology, Austria
2Universidad de Málaga, Spain

3Johannes Kepler University Linz, Austria
4University of Vienna, Austria

1bergmayr@big.tuwien.ac.at, 2mw@lcc.uma.es
3retschitzegger@cis.jku.at, 4uwe.zdun@univie.ac.at

Abstract: To focus only on those parts of a metamodel that are of interest for a specific
task requires techniques to generate metamodel snippets. Current techniques generate
strictly structure-preserving snippets, only, although restructuring would facilitate
to generate less complex snippets. Therefore, we propose metamodel shrinking to
enable type-safe restructuring of snippets that are generated from base metamodels.
Our approach allows to shrink a selected set of metamodel elements by automatic
reductions that guarantee type-safe results by design. Based on experiments with 12

different metamodels from various application domains, we demonstrate the benefits of
metamodel shrinking supported by our prototypical implementation build on top of the
Eclipse Modeling Framework (EMF).

1 Introduction

With the adoption of Model-Driven Engineering (MDE), more and more modeling lan-

guages are defined based on metamodels. Large metamodels such as the current UML

metamodel rely typically on complex structures which are challenging to grasp. For in-

stance, manually identifying the effective classifiers and features of a certain diagram type

in the metamodel requires much effort. The UML classifier Class transitively inherits

from 13 other classifiers and provides 52 structural features which shows that even putting

the focus only on one classifier can already be challenging. Allowing one to snip out a

subset of a metamodel would relieve one from the full complexity imposed by the base

metamodel. For instance, this would be beneficial for automating model management

tasks by formulating model transformations on metamodel subsets instead of their base

metamodels [SMM+12].

However, if the extraction of an effective metamodel subset is aspired, we are not only

confronted with the selection of classifiers and features of the base metamodel, but also

with their reduction to actually shrink the number of classifiers or generalizations. Such

reductions can be useful because the design structure of the base metamodel may not be

85



necessarily a good choice for the extracted metamodel subset. It has to be noted that a

naive reduction of classifiers may lead to inconsistencies such as (i) broken inheritance

hierarchies, (ii) missing feature containers, and (iii) dangling feature end points which

require special attention in the shrinking process.

In this work, we propose an approach to automatically shrink metamodels. The result

of shrinking a metamodel is what we call a metamodel snippet. A metamodel snippet is

considered as a set of metamodel elements, i.e., classifiers and features, originally defined

in the base metamodel. We provide refactorings to restructure initially extracted metamodel

snippets. Thereby, we enable the reduction of metamodel elements that may become

obsolete by a restructuring and enhance the understandability of metamodel snippets. For

instance, consider the reductions of deep inheritance hierarchies that may not be necessarily

required for a metamodel snippet. Applying reductions to metamodel snippets distinguishes

our approach from some recent work [SMBJ09, KMG11, BCBB11] that generate strictly

structure-preserving results. Reductions enable metamodel snippets with a lower number of

classifiers and features, and flatter inheritance hierarchies. Our proposed reductions are type-

safe in the sense that extensional equivalence1 between extracted and reduced metamodel

snippets is guaranteed by design. Our approach relies on 4 operators: (i) Select to define

the initial set of classifiers and features, (ii) Extract to generate a structure-preserving

metamodel snippet, (iii) Reduce to shrink the metamodel snippet, and (iv) Package to

compose all elements into a metamodel snippet that can be used as any other metamodel.

The structure of this paper is as follows. In Section 2, we introduce our metamodel shrinking

approach. A prototype has been implemented based on the Eclipse Modeling Framework2

(EMF) that is presented in Section 3. We critically discuss the results of applying our

prototype for 12 metamodels in Section 4. A comparison of our approach to related work is

presented in Section 5, and finally, lessons learned and conclusions are given in Section 6.

2 Metamodel Shrinking

Our proposed metamodel shrinking approach relies on OMG’s MOF3 abstraction level

and is therefore metamodel agnostic. A metamodel snippet MMsnippet is produced by

applying our approach to a base metamodel MMbase as shown in Fig. 1.

MMsnippet

A
A A

B

(ii) (iii)(i) (iv)D E

D E D E

A

B

D E

Bad
Smell

Type‐safe
restructuring

A

MMbase

BC

D E

MinputMinput
PackageExtractSelect Reduce

MEsselected MEsextracted MEsreduced
MEspackaged

Figure 1: Overview of metamodel shrinking approach

1A metamodel defines a collection of models, i.e., extensions, that conform to it [VG12].
2http://www.eclipse.org/modeling/emf
3http://www.omg.org/mof

86



We propose a 4-step metamodel shrinking process. Each step is accompanied by a dedicated

operator. The Select operator identifies based on a set of models Minput all metamodel

elements MEs, i.e., classifiers and features, required to produce these models. However, a

selection of metamodel elements driven by collecting only directly instantiated classifiers

may not be sufficient. Indirectly instantiated classifiers, and thus, the classifier taxonomy

need to be additionally considered to end up with a valid MMsnippet. This is exactly the

task of the Extract operator. The operator produces a set of connected metamodel elements

that strictly preserves the structure of the base metamodel. Subsequently, the Reduce

operator shrinks the result of the extraction step. To achieve a reduction of metamodel

elements, we apply well-known refactorings [Opd92, HVW11] to the extracted MMsnippet.

In this way, deep inheritance hierarchies without distinct subclasses are reduced. Indicators

for refactorings are often referred to as ‘bad smells’. For instance, in Fig. 1, we assume that

class B ‘smells bad’, because it does not contain any feature for its subclasses. By removing

the class and linking its subclasses directly to its superclass, the smell is eliminated. Finally,

the Package operator serializes the reduced set of metamodel elements into a persistent

metamodel. In the following subsections, we discuss these 4 steps in more detail.

2.1 Selection of required metamodel elements

In the selection step, all classifiers and features of interest are determined. This explicit set

of metamodel elements shall be by all means part of the metamodel snippet. We support

the selection step by allowing models as input for the Select operator. They serve as a basis

to automatically identify the required metamodel elements to represent them. A potential

model for selecting metamodel elements is sketched in Fig. 2.

Figure 2: Class diagram of ‘PetStore Navigability’ application scenario

The UML class diagram shows an excerpt of the ‘PetStore’ scenario as introduced by Sun.

The idea is to create a metamodel snippet of the UML metamodel that is effectively required

87



to express the ‘PetStore’ class diagram. We use this scenario throughout the remaining

sections as a running example.

2.2 Extraction of selected metamodel elements

Since the explicitly selected set of metamodel elements may not be sufficient, implicit

metamodel elements that glue them together need to be additionally identified. We call

these elements implicit, as they are computed from the explicit set of metamodel elements

produced by the Select operator. The Extract operator traverses the base metamodel and

produces an enhanced set of metamodel elements by addressing (i) explicitly selected

metamodel elements, (ii) the inheritance closure of explicitly selected classes, (iii) classes

that serve as container of explicitly selected inherited features, and (iv) features contained

by implicitly selected classes. As a result, an initial metamodel snippet is produced.

Considering the excerpt of our example in Fig. 3, Class was explicitly selected as

the ‘PetStore’ class diagram contains Class instances. For instance, Encapsulated-

Classifier and StructuredClassifier were implicitly added in addition to the

explicit selection as they are in the inheritance closure of Class. They are considered

as a means to provide a connected set of metamodel elements decoupled from the base

metamodel. The decoupling is achieved by removing features of classes which reference

classes not contained in the set of selected metamodel elements. In our example, 32 features

were removed in the extraction step. In the reduction step, implicitly selected metamodel

elements are potential candidates for becoming removed again.

Class

Encapsulated
Classifier

Structured
Classifier

Classifier

Behaviored
Classifier

part

Connectable
Element

Property

role

owned
Attribute

Explicitly selected
MEs:
Class, Property
role, part,
ownedAttribute

superClass

Note: Features role,
part, ownedAttribute
are contained by
StructuredClassifier

Figure 3: Extracted metamodel elements of our example

2.3 Reduction of extracted metamodel elements

This step aims to shrink the initial metamodel snippet. Manually identifying useful reduc-

tions is cumbersome when the number of involved metamodel elements is overwhelming

and interdependencies between these reductions need to be considered. For instance, in

our example, 101 metamodel elements were extracted from which 34 were reduced by

applying 27 refactorings as a means to achieve a type-safe restructuring. The Reduce opera-

tor indicates extracted metamodel elements for reduction according to a given reduction

88



configuration RC. Such a configuration can be adapted to control the result of the Reduce

operator. We introduce two concrete reduction configurations depicted in Fig. 4.

OCL expressions for conditions:

fSet is assumed to be the collection of all selected features
c1: context Class def if fSet‐>exists(f|self.ownedAttribute

‐>includes(f)) then 'k' else 'r' endif
c2: context Feature def if self.lower>=1 or self.isDerived=true

then 'k' else 'r' endif
c3: context Feature def if self.lower>=1

then 'k' else 'r' endif

Legend for table cells:

RC � Reduction Configuration
k...keep
r...reduce
c...conditional reduce

OCL expressions for metamodel elements:

Concrete Class: : context Class inv not self.isAbstract
Abstract Class: : context Class inv self.isAbstract

RC

Extracted metamodel element

e
x
a
ct

e
x
te
n
si
v
e

C
la
ss
if
ie
r

Explicit concrete Class k k

Implicit concrete Class k k

Explicit abstract Class k k

Implicit abstract Class c1 r

Explicit/implicit Datatype k k

Explicit/implicit Enumeration k k

F
e
a
tu
re Explicit Feature k k

Implicit Feature c2 c3

Figure 4: Exact and extensive reduction configuration (RC)

The reduction of deep inheritance hierarchies in a metamodel snippet is the rationale behind

the exact configuration. Implicitly extracted classifiers in the shape of abstract classes, e.g.,

EncapsulatedClassifier or StructuredClassifier in our example, are in-

dicated for reduction. Considering the UML metamodel, Class originally inherits from

EncapsulatedClassifier which inherits from StructuredClassifier that

in turn inherits from Classifier. They are all well justified in the context of the base

metamodel, but may not be as important for metamodel snippets. In our example, the

context was narrowed to UML’s data modeling capabilities. As a result, Encapsulated-

Classifier is indicated for reduction when applying the exact reduction configuration

as shown in Fig. 5.

Class

Encapsulated
Classifier

Structured
Classifier

Classifier

Behaviored
Classifier

part

Connectable
Element

Property

role

owned
Attribute

Metamodel
elements
indicated for
reductionsuperClass

Figure 5: Metamodel elements indicated for reduction with extensive RC of our example

Similar to reducing implicitly selected classifiers, features with these characteristics are

candidates for reduction except they are defined as being required or derived. While

the rationale for the former exception is obvious, derived features are kept to avoid loss

of information due to their calculated instead of user-defined value. The superClass

feature of Class is an example in this respect.

In contrast to the exact reduction configuration, the extensive reduction configuration in-

89



dicates derived features for reduction. Since we did not apply UML’s generalization

concept for classes in our example, the superClass feature was reduced by the extensive

reduction configuration. Rather than keeping implicitly selected abstract classes that serve

as feature containers, in the extensive reduction configuration the intension is to reduce them

without exceptions. Both EncapsulatedClassifier and StructuredClassi-

fier are, thus, indicated for reduction in our example.

However, indicating metamodel elements for reduction is only half the way to obtain a

useful metamodel snippet since naively reducing classes may lead to inconsistencies. We

encountered three possible inconsistencies in our approach: (i) broken inheritance hierar-

chies, (ii) missing feature containers, and (iii) dangling feature end points. In our example,

the generalization relationship of Class needs to be relocated, and the feature role

requires a new container and a new type when the indicated classes are actually reduced.

To overcome these unintended effects, we conduct a type-safe restructuring by relying on

well-known object-oriented refactorings [Opd92] adapted to the area of (meta)modeling

[HVW11]. In Fig. 6, we introduce refactorings for the restructuring of metamodel snippets.

Classifier with
Property

A

B

C

Push down
Feature

Specialize
Feature
Type

Pull up
Inheritance

C

A A

B

a : Type

B

a : Type
B

A

C

B

C

Reduced
Classifier Generalization

Reduced
GeneralizationAssociation

1 2 3

Classifier Reduced Classifier
with Property

Problem:
Broken inheritance hierarchy

Problem:
Dangling feature end point

Problem:
Missing feature container

Figure 6: Refactoring techniques for type-safe metamodel restructuring

They achieve (i) relocating generalization relationships by pulling up the relationship ends

to super-superclasses, (ii) moving features if their base containers were reduced by pushing

down features from superclasses to subclasses and (iii) reconnecting dangling feature end

points by specializing feature types from superclasses to subclasses. These refactorings

are, by design, type-safe since they operate on the inheritance hierarchies imposed by the

base metamodel and respect type substitutability [GCD+12]. Refactorings are considered

as events triggered by the need to usefully conduct indicated reductions on the metamodel

snippet.

Pull up inheritance. This refactoring enables relocating generalization relationships. A

relationship end that would be a dangling reference as a result of reducing classes which lie

in between of other classes in the inheritance hierarchy has to be relocated. Such a gap in

the inheritance hierarchy is closed by pulling up the relationship end to the least specific

superclasses of the reduced class.

In our example, the generalization relationship of Class needs to be relocated as Class

indirectly specializes Classifier and both classes are kept after the reduction. As a

result, Class inherits from Classifier serving as the replacement for the more spe-

cific classes EncapsulatedClassifier and StructuredClassifier as shown

in Fig. 7. The indicated reduction for Classifier is relaxed because several subclasses

90



such as Association or Datatype inherit features contained by Classifier. A

reduction of Classifier would lead to duplicated features in the corresponding sub-

classes. We decided to prevent such an effect as from an object-oriented design perspective

this is not desirable.

Classifier

part

Property
role

owned
Attribute

2
Push down
Feature

Class

1
Pull up
Inheritance

3Specialize
Feature Type

Figure 7: Refactored metamodel elements of our example

Push down feature. This refactoring supports moving features from one to another container

by going down the inheritance hierarchy. Features for which a new container is required are

moved down to the most generic subclass. This could lead to reverting back to a previously

reduced container to avoid duplicated features (cf., Classifier). Reduced containers

become in such a situation reintroduced.

In our example, the features part, ownedAttribute and role are moved to a con-

tainer compatible with StructuredClassifier since this class was reduced.

Specialize feature type. This refactoring addresses reconnecting dangling references of

associations or compositions between classes. Similar to the push down feature refactoring,

the most generic subclass is selected for the type specialization.

In our example, the feature role needs to be reconnected to a type compatible with

ConnectableElement. As a result, the type of feature role is changed from Con-

nectableElement to Property. Searching for the most generic subclass may lead

to a similar situation like for the push down feature refactoring, i.e., the reintroduction of

previously reduced classes.

2.4 Packaging of metamodel snippet

To enable dedicated modeling tools to work with metamodel snippets, the metamodel snip-

pets need to be materialized. The Package operator takes the result of the Reduce operator

and reconciles the shrinked set of metamodel elements into a serialized MMsnippet.

In Fig. 8, the complete result for our example is shown, i.e., the part of the UML metamodel

required to express the ‘PetStore’ model. We applied the extensive reduction configuration

which resulted in 22 classifiers and 45 features. Overall, 8 different classes were actually

instantiated as indicated by the dashed framed classifiers in Fig. 8. Using only this set

of classes would require to inject the same features multiple times in different classes

which would lead to a metamodel snippet with poor design quality. Thus, by applying the

91



proposed refactorings, we can find an effective trade-off between a carefully selected set of

classes and design quality.

Element
NamedElement

RedefinableElement

Classifier

Namespace PackageableElementTypedElement

LiteralSpecification

LiteralInteger

LiteralUnlimited
Natural

AssociationDataType

Property

Class

Package

Model

ownedElement: Element
owner: Element

type: Classifer member: NamedElement
ownedMember: NamedElement

feature: Property
attribute: Property
isAbstract: Boolean
package: Package

redefinitionContext: Classifier
isLeaf: Boolean

visibility: VisibilityKind
qualifiedName: String
namespace: Namespace
name: String

isDerived: Boolean
memberEnd: Property
endType: Classifier
relatedElement: Element

value: Integer

value: UnlimitedNatural

isDerived: Boolean
isDerivedUnion: Boolean
aggregation: AggregationKind
isComposite: Boolean
class: Class
opposite: Property
association: Association
isStatic: Boolean
isOrdered: Boolean
isUnique: Boolean
upper: unlimitedNatural
lower: Integer
isReadOnly: Boolean
featuringClassifier: Classifier
upperValue: LiteralSpecification
lowerValue: LiteralSpecification

isActive: Boolean
part: Property
role: Property
ownedAttribute: Property

ownedType: Classifier
nestedPackage: Package
nestingPackage: Package
packagedElement: PackageableElement

MMsnippet

<<DataType>>
String

<<DataType>>
Boolean

<<DataType>>
UnlimitedNatural

<<DataType>>
Integer

<<Enumeration>>
VisibilityKind

<<Enumeration>>
AggregationKind

Dashed frame indicates explicitly
selected metamodel elements
of the �PetStore� data model

Figure 8: Metamodel snippet of our example

3 Prototypical Implementation: EMF Shrink

To show the feasibility of the metamodel shrinking approach, we implemented a prototype

based on EMF. To operationalize our proposed operators, we implemented them based on a

pipeline architecture. While the Select and Extract operator have been straightforwardly

implemented on the basis of EMF, the realization of the Reduce operator required more

care because potentially occurring side effects as a result of applied metamodel refactorings

needed to be handled. An example in this respect is the reintroduction of previously reduced

classes because they may have effects on the inheritance hierarchies. For that reason, we

heavily exploited EMF’s change notification mechanism to trigger precalculated relaxations

on refactorings that become obsolete as metamodel shrinking progresses. The Package

operator generates independently of the position in the pipeline valid metamodel snippets

conforming to Ecore, i.e., EMF’s meta-metamodel. This was helpful for validating and

interpreting the results of our operators. We used an automatic validation by executing

well-formedness constraints and manual validation by inspecting the generated snippets

in the graphical modeling editor for Ecore models. Implementation code for metamodel

92



snippets can be generated by applying EMF’s generation facility.

Customizations in a metamodel’s implementation code that also relate to a metamodel

snippet requires special consideration. In our running example, the value of the feature

ownedElement in Element is a derived value. For that reason, we additionally realized,

based on EMF’s adapter concept, generic adapter factories that allow the integration of

customized implementation code into generated implementation code of a metamodel

snippet as far as model manipulation operations are concerned. Whenever model elements

are created with a metamodel snippet, in the background corresponding model elements as

instances of the base metamodel are created. As a result, model elements adapt each other

in the sense of a delegation mechanism and are kept synchronized via change notifications.

Further details regarding our implemented prototype can be found online4.

4 Evaluation

To evaluate the applicability of our proposed approach, we performed experiments by

shrinking 12 metamodels based on given models as summarized in Fig. 9.

Metamodel
#

R
C
1
+

R
C
2
+

R
C
1
+

R
C
2
+

R
C
1
+

R
C
2
+

ACME
1

19 26 7 4 5 5 4 4 2 2

Agate
1

72 204 16 35 12 11 29 29 6 8

BMM
2

47 66 13 22 11 11 16 16 4 4

BPMN2
3

147 458 35 73 34 31 64 40 2 7

HTML
4

62 112 8 16 7 7 14 14 2 2 1

iStar
5

44 101 19 41 18 18 30 30 0 0

PNML
6

42 80 14 16 10 10 16 16 2 2

Requirement
4

50 53 22 23 22 20 20 20 0 8

SBVR
4

332 361 20 18 20 20 11 11 0 0

SQLDDL
4

20 27 13 21 13 13 20 20 0 0

SysML
7

307 621 38 84 33 25 64 38 1 15 2

UML
4

264 586 36 65 29 22 52 45 6 27 2

Results in absolute numbers

T
o
ta
l
cl
a
ss
if
ie
rs

T
o
ta
l
fe
a
tu
re
s

E
xt
ra
ct
e
d

cl
a
ss
if
ie
rs

E
xt
ra
ct
e
d

fe
a
tu
re
s

P
a
ck
a
g
e
d

cl
a
ss
if
ie
rs

P
a
ck
a
g
e
d

fe
a
tu
re
s

A
p
p
li
e
d

re
fa
ct
o
ri
n
g
s

Extract Package Reduce

Source of used models:
1Order Processing System
(IBM developerworks)

2JK Enterprises
(IBM developerworks)

3Hardware Retail Process
(OMG BPMN Specification)

4PetStore use case
(PetStoreNavigability)

5Toronto Civil Workers Strike
(OpenOME Toronto)

6Vending Machine
(Workflow Petri Net Designer
WoPeD)

7Distiller
(OMG SysML)

+)RC1 ... Exact reduction
configuration
+)RC2 ... Extensive reduction
configuration

#)From AtlanMod
Metamodel Zoo

Figure 9: Quantitative experiment results in absolute numbers

The rationale behind our selection of Metamodels is mainly based on three criteria: (i)
coverage of a wide range of applications domains (from business motivation and business

process management over requirements engineering to software and systems engineering),

4http://code.google.com/a/eclipselabs.org/p/emf-shrink

93



(ii) consideration of small-sized to large-sized metamodels (from less than 50 to over 900
metamodel elements), (iii) involvement of metamodels with flat as well as deep inheritance

hierarchies (from 2 up to 10 abstraction levels). Total classifiers and Total features refer to

the size of a metamodel whereas Extracted classifiers and Extracted features represent the

result of the extraction step in the respective experiments. Results from the Package operator

w.r.t. the Reduce operator are presented for the two introduced reduction configurations. The

less classifiers and features were packaged w.r.t. their corresponding number of extracted

classifiers and features, the more metamodel elements were reduced. Finally, absolute

numbers of applied refactorings are provided as a result of the Reduce operator. Typically,

the more reductions of metamodel elements were achieved, the higher is the number of

applied refactorings.

Based on the quantitative results, we critically discuss our approach from a qualitative

perspective by investigating benefits and limitations of our approach. We consider 5
architectural metrics (cf., [BD02, MSJ04]) of packaged compared to extracted metamodel

elements: (i) number of reduced classifiers, (ii) number of reduced features, (iii) mean

features per classifier, (iv) mean inheritance hierarchy depth and (v) understandability.

As expected, benefits of metamodel shrinking take effect when large metamodels with deep

inheritance hierarchies (cf., UML or SysML experiments) are considered. Considering

Fig. 10, we could achieve to reduce in average ≈ 13% of extracted classifiers with the

exact reduction configuration, while an average value of ≈ 18% could be achieved with the

extensive one.

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

A
ch
ie
v
e
d
cl
a
ss
if
ie
r
re
d
u
ct
io
n
in
%

Exact reduction Extensive reduction

exact 12,6%

extensive 17,9%

0,0
5,0

10,0
15,0
20,0
25,0
30,0
35,0
40,0
45,0
50,0
55,0
60,0

A
ch
ie
v
e
d
fe
a
tu
re

re
d
u
ct
io
n
in
%

Exact reduction Extensive reduction

exact 14,7%

extensive 20,0%

Figure 10: Achieved reductions of metamodel elements

Most classifier reductions could be achieved in the UML (≈ 39%) and SysML (≈ 34%)

experiments as these metamodels cover many abstract classifiers for reasons of genericity

or extensibility which is not necessarily required for metamodel snippets. Results of

feature reductions w.r.t. the number of extracted features are in average in the range of

≈ 15% to ≈ 20%. Reductions of features are generally easier to achieve as they lead

typically not to inconsistencies in a metamodel snippet. However, in case of classifier

reductions inconsistencies in a metamodel snippet may lead to reintroducing a previsouly

reduced feature container to avoid duplicated features. Consequently, the rates of classifier

reductions are lower than the rates of feature reductions particularly when the number of

extracted features is much higher than the number of extracted classifiers.

Considering Fig. 11, the extensive reduction of classifiers may lead to an increase of

mean features per classifier since features are pushed down from generic to more specific

94



classifiers (cf., Agate or UML experiments).

0

0,5

1

1,5

2

2,5

3

M
e
a
n
fe
a
tu
re
s
p
e
r
cl
a
ss
if
ie
r

Extraction result Exact reduction Extensive reduction

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

M
e
a
n
in
h
e
ri
ta
n
ce

h
ie
ra
rc
h
y
d
e
p
th

Extraction result Exact reduction Extensive reduction

Figure 11: Mean features per classifier and mean inheritance hierarchy depth

Extensive reductions have generally positive effects on the mean inheritance hierarchy

depth of metamodel snippets. The less classifiers are contained by metamodel snippets, the

flatter inheritance hierarchies can be achieved while on the downside the less opportunities

are available for features to be placed in appropriate classifiers. Generally, reductions of

metamodel elements and potential refactorings lead inherently to structural differences

between metamodel snippets and their base metamodels. Still, our metamodel shrinking

approach generates metamodel snippets that are restructured in a type-safe way. Metamodel

snippets enable expressing the models that were used to produce them in the same way as

their base metamodels.

Finally, we applied the understandability metric of [BD02] to the metamodel snippets in

our experiments as shown in Fig. 12.

‐14,0

‐12,0

‐10,0

‐8,0

‐6,0

‐4,0

‐2,0

0,0

U
n
d
e
rs
ta
n
d
a
b
il
it
y
[B
D
0
2
,
M
S
J0
4
]
o
f

m
e
ta
m
o
d
e
l
sn
ip
p
e
ts

Extraction result Exact reduction Extensive reduction

0,0

10,0

20,0

30,0

40,0

50,0

60,0

A
ch
ie
v
e
d
im

p
ro
v
e
m
e
n
t
o
f

u
n
d
e
rs
ta
n
d
a
b
il
it
y
[B
D
0
2
,
M
S
J0
4
]
in
% Exact reduction Extensive reduction

exact 17,8%

extensive 25,7%

Understandability = ‐ 0.2*Abstraction ‐ 0.2*Coupling ‐ 0.2*Polymorphism

‐ 0.2*Complexity ‐ 0.2*Design size

Figure 12: Understandability of metamodel snippets

We used a slightly adapted version of the originally proposed formula to calculate the

understandability measures in two respects. First, we omitted the encapsulation property

since private features are rarely used for metamodels, and second, we also omitted the

cohesion property since our focus is on structural rather than behavioral features. As a

result, our formula consists of 5 properties with equal weights, i.e., 0.2, that add up to 1
as suggested by [BD02]: (i) Abstraction, i.e., average number of ancestors for classifiers,

(ii) Coupling, i.e., average number of features owned by a classifier that reference to other

95



distinct classifiers, (iii) Polymorphism, i.e., number of abstract classifiers, (iv) Complexity,

i.e., average number of features in a classifier and (v) Design size, i.e., number of classifiers.

The calculated value of the understandability metric is negative which means the lower the

value the more difficult is it to understand a metamodel.

We could improve the understandability of extracted compared to extensively reduced

metamodel snippets in average by ≈ 26%. Considering the UML experiment, the under-

standability value of the UML metamodel is ≈ −61 whereas with the Extract operator we

could improve this value to ≈ −12 when the focus is on UML’s data modeling capabilities.

With the restructuring of extracted metamodel elements, we could further improve the

understandability by ≈ 48% in the metamodel snippet.

5 Related Work

With respect to our goal of generating metamodel snippets, we identified three lines of

related research work: (i) model slicing, (ii) model refactoring and (iii) aspect mining.

Model Slicing. Inspired from the notion of program slicing [Wei81], a static slicing mecha-

nism is proposed by [KMS05] for UML class diagrams and by [BLC08] for modularizing

the UML metamodel. Both approaches present how (meta)model elements are selected by

relying on user-defined criteria (e.g., classifiers or relationships to be included) that express

the initial set of elements from which a slice is computed. This computation is in our work

supported by the Extract operator. Slicing mechanisms specific to UML class diagrams

and state machine diagrams are introduced by [LKR10, LKR11]. In this research endeavor,

class invariants and pre- and post-conditions of operations are exploited for computing

class diagram slices while data and control flow analysis techniques are applied to reduce

state machines to the elements relevant to reach a certain state. Since in our approach meta-

models are solely considered from a structural viewpoint, techniques related to behavioral

viewpoints (e.g., operational semantics) are beyond the scope of our approach. Slicing meta-

models is addressed by approaches presented in [SMBJ09] and more recently in [KMG11].

They apply a projection-based approach to obtain a strictly structure-preserving subset as

opposed to our approach that enables restructuring of metamodels. A declarative language

as a means to implement slicing mechanisms for reducing (meta)models is introduced by

[BCBB11] which could be an alternative technology to realize our Reduce operator.

Model Refactoring. Existing research work in the area of model refactoring is presented by

[FGSK03] addressing pattern-based refactorings on UML-based models, [Wac07] propos-

ing model refactorings for co-adapting models with evolved metamodels, or [MMBJ09]

applying generic model refactorings on different kind of models. Our approach focuses on

the metamodel level. We adopted commonly known refactorings originating from the area

of object-orientation [Opd92, HVW11] to achieve type-safe metamodel reductions.

Aspect Mining. Since aspect-orientation has arrived at the modeling level, several research

endeavors started addressing this topic as surveyed in [WSK+11]. Identifying aspects in

existing models is investigated by [ZGLT08], presenting approaches for mining crosscutting

concerns in a given set of models and describing them with an aspect language. Metamodel

snippets can be compared with the notion of symmetric concerns [HOT02, WSK+11] since

96



they subsume model elements related to certain modeling concerns.

6 Lessons Learned

We now summarize lessons learned from realizing and applying our proposed approach.

Type-safe restructuring as enabler for less complex metamodel snippets. Strictly structure-

preserving approaches are not necessarily the first choice for generating metamodel snippets

since restructuring can reduce the number of metamodel elements. Approaches that facili-

tate to compose (cf., [WS08]), combine (cf., [Val10]) or extend (cf., [LWWC12]) existing

metamodels may benefit from reduced metamodel snippets if they intend to operate on a

subset of a large metamodel.

Usage of existing metamodel implementation code for metamodel snippets. Decoupling

metamodel snippets from their base metamodel requires care if existing metamodel imple-

mentation code is available. Clearly, this depends on the metamodeling workbench. We

realized delegation mechanisms that loosely couple metamodel snippets with their base

metamodel at the implementation level to cope with this challenge.

Metamodel snippets as reusable assets for new metamodels. Since reuse allows exploiting

domain knowledge already expressed in existing metamodels [KKP+09], metamodel snip-

pets can support reuse when only some parts of an existing metamodel are required. For

instance, the language workbench challenge 20125 refers to such a reuse scenario. Clearly,

metamodel snippets are a first step in this direction and may act as stimulator to enhance

reuse in metamodeling.

References

[BCBB11] Arnaud Blouin, Benot Combemale, Benoit Baudry, and Olivier Beaudoux. Modeling
Model Slicers. In MODELS’11, pages 62–76. Springer, 2011.

[BD02] Jagdish Bansiya and Carl G. Davis. A Hierarchical Model for Object-Oriented Design
Quality Assessment. IEEE Trans. Softw. Eng., 28(1):4–17, 2002.

[BLC08] Jung Ho Bae, KwangMin Lee, and Heung Seok Chae. Modularization of the UML
Metamodel Using Model Slicing. In ITNG’08, pages 1253–1254. IEEE, 2008.

[FGSK03] R. France, S. Ghosh, E. Song, and D.K. Kim. A metamodeling approach to pattern-based
model refactoring. IEEE Softw., 20(5):52–58, 2003.

[GCD+12] Clément Guy, Benoı̂t Combemale, Steven Derrien, Jim R. H. Steel, and Jean-Marc
Jézéquel. On model subtyping. In ECMFA’12, pages 400–415. Springer, 2012.

[HOT02] W. Harrison, H. Ossher, and P. Tarr. Asymmetrically vs. Symmetrically Organized
Paradigms for Software Composition. Research Report RC22685, IBM, 2002.

[HVW11] Markus Herrmannsdoerfer, Sander D. Vermolen, and Guido Wachsmuth. An extensive
catalog of operators for the coupled evolution of metamodels and models. In SLE’11,
pages 163–182. Springer, 2011.

5http://www.languageworkbenches.net

97



[KKP+09] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and S. Völkel. Design
Guidelines for Domain Specific Languages. In OOPSLA’09 Workshop on Domain-
Specific Modeling (DSM’09), 2009.

[KMG11] Pierre Kelsen, Qin Ma, and Christian Glodt. Models within Models: Taming Model
Complexity Using the Sub-model Lattice. In FASE’11, pages 171–185. Springer, 2011.

[KMS05] Huzefa Kagdi, Jonathan I. Maletic, and Andrew Sutton. Context-Free Slicing of UML
Class Models. In ICSM’05, pages 635–638. IEEE Computer Society, 2005.

[LKR10] Kevin Lano and Shekoufeh Kolahdouz-Rahimi. Slicing of UML Models Using Model
Transformations. In MODELS’10, pages 228–242. Springer, 2010.

[LKR11] Kevin Lano and Shekoufeh Kolahdouz-Rahimi. Slicing Techniques for UML Models.
JOT, 10:1–49, 2011.

[LWWC12] Philip Langer, Konrad Wieland, Manuel Wimmer, and Jordi Cabot. EMF Profiles: A
Lightweight Extension Approach for EMF Models. JOT, 11(1):1–29, 2012.

[MMBJ09] Naouel Moha, Vincent Mahé, Olivier Barais, and Jean-Marc Jézéquel. Generic Model
Refactorings. In MODELS’09, pages 628–643. Springer, 2009.

[MSJ04] Haohai Ma, Weizhong Shao, Lu Zhang 0023, and Yanbing Jiang. Applying OO Metrics
to Assess UML Meta-models. In UML’04, pages 12–26. Springer, 2004.

[Opd92] William F. Opdyke. Refactoring object-oriented frameworks. PhD thesis, 1992.

[SMBJ09] Sagar Sen, Naouel Moha, Benoit Baudry, and Jean-Marc Jézéquel. Meta-model Pruning.
In MODELS’09, pages 32–46. Springer, 2009.

[SMM+12] Sagar Sen, Naouel Moha, Vincent Mahé, Olivier Barais, Benoit Baudry, and Jean-Marc
Jézéquel. Reusable model transformations. SoSym, 11(1):111–125, 2012.

[Val10] Antonio Vallecillo. On the Combination of Domain Specific Modeling Languages. In
ECMFA’10, pages 305–320. Springer, 2010.

[VG12] Antonio Vallecillo and Martin Gogolla. Typing Model Transformations Using Tracts.
In ICMT’12, pages 56–71. Springer, 2012.

[Wac07] Guido Wachsmuth. Metamodel Adaptation and Model Co-adaptation. In ECOOP’07,
pages 600–624. Springer, 2007.

[Wei81] Mark Weiser. Program slicing. In ICSE’81, pages 439–449. IEEE Press, 1981.

[WS08] Ingo Weisemöller and Andy Schürr. Formal Definition of MOF 2.0 Metamodel Compo-
nents and Composition. In MODELS’08, pages 386–400. Springer, 2008.

[WSK+11] Manuel Wimmer, Andrea Schauerhuber, Gerti Kappel, Werner Retschitzegger, Wieland
Schwinger, and Elisabeth Kapsammer. A survey on UML-based aspect-oriented design
modeling. ACM Comput. Surv., 43(4):1–33, 2011.

[ZGLT08] Jing Zhang, Jeff Gray, Yuehua Lin, and Robert Tairas. Aspect mining from a modelling
perspective. Int. J. Comput. Appl. Technol., 31:74–82, 2008.

98


