
Making Wikis productive as the glue code of project

information (Project WAVES)

Tim Romberg, Peter Szulman {romberg|szulman}@fzi.de

FZI Research Centre for Information Technologies at the University of Karlsruhe

Abstract. Today's software engineering projects require a knowledge management infrastructure

that allows integration of existing information sources (e.g. issue trackers) and the exchange across

organizational boundaries. In Project WAVES, we implement a solution based on a semantic,

virtual knowledge base and a Rich Wiki Client.

1 Trends and Knowledge Management scenarios in software

engineering today

Software engineering today is faced with the following trends:

• A greater proportion of effort is spent on maintaining, refactoring and reintegrating

existing software, rather than writing it from scratch. This is because hardware

platforms have been more stable and scalable in recent years than in the earlier

computing history, when the entire application stack had to be created from scratch

periodically.

• Typical projects can involve several programming languages and frameworks. It is

not uncommon, for example, to find an application server component written in Java

accessing a library written in C++; the Java component in turn serving both a Web

interface written in PHP with some Flash elements and a Microsoft .NET Rich

Client. Common Internet standards such as SOAP or XML make it possible to plug

together best-of-breed frameworks for each task, rather than having to choose one.

• Projects are distributed both geographically and over several organizations. A full

offshoring of all programming activities to a low-cost country is only one possibility

of many.

• The growing library of Open Source software provides opportunities to jump-start

development on new products by integrating or extending existing code, or to reach

a large audience of existing users with add-on products and services.

This leads to Knowledge Management scenarios which cross organizational borders and

require integration of existing knowledge, such as:

• A small interface design consultancy is hired, together with a number of other

specialized service providers, into a software development project at a large

telecommunications company. The question is how to set up a knowledge repository

for this project where partners are provided selective access to each other’s existing

knowledge (such as a style guide), and it is ensured that any contributions by a

29



contractor’s employees is still accessible to at least this contractor after the project

ends.

• A company (e.g. Apple) publishes a software component (e.g. Safari WebKit) as

Open Source. While the Open Source project has a public site providing version

management, issue tracking, continuous integration, etc., the company still needs to

manage private information with respect to this component (e.g. issues which would

reveal coming features of its competitive offerings). The relationships of this

information with the public information need to be kept in sync.

2 The role of Wikis

It is a frequent point of contention how Knowledge Management is different from

Information Management, where the one starts and the other ends. No matter where one

draws the line, the members of a software engineering team (encompassing programmers

and testers as well as designers, business analysts and customer contacts), clearly need

access to both knowledge and information, for example:

• the concepts and methods that define their respective qualification (such as the

concepts of object-oriented programming or lambda calculus for a programmer, the

concept of perspective for a graphic designer);

• knowing how to use the specific tools and raw material in their job (programming

languages, libraries and environments, graphics software etc.);

• background knowledge of the problem domain their activities address (e.g. new

legislation that will have to be implemented by the software product, users’

background);

• specific infrastructure and processes in their work environment (how to log onto the

staging server, whom to notify when changes are made);

• and finally, knowledge concerning the very project at hand – what the responsibility

of certain modules are, why certain design decisions were made, which limitations

and workarounds exist etc.

Today, mature tools and integrated Application Lifecycle Management (ALM) suites

exist for managing standard processes and most aspects of the current project

information. In many of the other areas, wherever a team needs to capture evolving

knowledge, Wikis have established themselves as a versatile tool for managing

knowledge whose structure is not well defined beforehand (as opposed to project

information that can be modelled in databases). In fact, the first Wiki (Ward

Cunningham’s WikiWiki) was created to share software engineering patterns – an

example for a semi-structured type of knowledge.

30



3 Integration, sharing and distribution requirements

However, today’s Wiki engines constitute an island of their own with respect to existing

information sources and the outside world. The goal of the Waves project is to address

the mentioned challenges of Knowledge Management across organizational borders and

integrating existing information sources. While similar challenges exist in many problem

domains, we consider Software Engineering to be especially relevant, since it involves

electronic artefacts which to a certain degree are vehicles of knowledge themselves, and

since the dependencies between projects across organizations are long-term and require

ongoing collaboration.

In this paper, we want to especially address the integration, sharing and distribution

requirements, such as:

• being able to easily reference any existing information item (such as a bug or a

release) when authoring Wiki pages;

• annotating any existing information item (e.g. using a Wiki page);

• integrating different visibility spaces (public, company-wide, team-wide, personal),

by

o being able to capture private (less visible) comments on public (more visible)

knowledge resources;

o being able to easily publish currently private (less visible) knowledge into a

public (more visible) space while keeping a maximum of outgoing and

incoming references intact.

4 Solution architecture

Our solution architecture consists of an integrated virtual knowledge base which allows

querying knowledge (integrated search) and authoring knowledge (Rich Wiki client).

4.1 The integrated virtual knowledge base

WAVES Knowledge Base

Issue Tracking

Structure & Semantics Content Index

Project

Management

Group mails and

calendar Source repository Office Documents

SVN / CVS

31



Waves’ virtual knowledge base integrates the various existing information sources, as

depicted in the diagram, through a flexible adapter interface. The sources then become

accessible through the client interface of the knowledge base (so-called SWECR –

semantic web content repository, [Vö07]). Authored knowledge (Wiki pages including

ad-hoc form data) is stored directly in the knowledge base. The knowledge base is

implemented by combining a semantic metadata store (currently Sesame) with a binary

store (for content) and a full-text index (Lucene). Both replication and virtual access is

supported: Replication is usually chosen for data which is highly relevant for search

criteria, low volume, and stable. Virtual access is preferred for seldom accessed, high

volume, and volatile data.

4.2 Rich Wiki client

Waves provides a Rich Wiki client based on Java Swing. This enables a user-friendly,

productive WYSIWYG interface. The client automatically analyzes the currently entered

text to suggest hyperlinks to existing resources and Wiki pages (autocomplete). The user

can also explicitly ask for link suggestions in a given context and analyze text pasted

into the Wiki page from another application.

Figure 1. Automatic link suggestion in the Rich Wiki client

4.3 Sharing across organizational spaces

Sharing across organizational spaces involves the physical distribution of content and

metadata on the one hand, and their conceptual organization in different visibility spaces.

4.3.1 Physical distribution

The SWECR interface (client interface of the virtual knowledge base) implements

concepts borrowed from distributed relational databases, and thereby allows chaining

together virtual knowledge bases and stream query responses through them, to form a

32



comprehensive virtual knowledge base as seen by the user. For writing (transactions),

there is always one authoritative source. For reading, local server instances can replicate

more remote instances to provide more throughput and reliability. A replica of any

remote content that has been locally annotated is also kept for future reference, since the

external resource may become unavailable. With this distribution model we hope to

solve the Knowledge Management scenarios in our introduction: When an organization

or individual joins a new project, they can explicitly define certain areas within their

knowledge base which are allowed to be access and replicated by their partners.

4.3.2 Conceptual organization

Content and metadata is organized into discrete visibility spaces. Larger spaces are

created by the administrators of a server instance. But there is also the possibility to

create ad-hoc spaces for small groups by users themselves. When a piece of knowledge

is published, it is actually transferred into the more visible space (which may involve a

physical transfer to a different server instance). The transfer process then involves

updating the incoming and outgoing references, and issuing warnings about any

inconsistencies arising from this process.

5 Evaluation plans

The project takes an iterative approach, with major releases about every 6 months which

are evaluated by 4 industry partners. The first release concentrated on the integration of

the most important information sources (about a dozen applications in total, including

several issue trackers and “legacy” Wikis, as well as file servers, code repositories etc.),

and their joint querying. Evaluation of the second release, which includes the Wiki, is

currently underway.

6 Related work

One of the earliest Wiki engines addressing specific software engineering activities and

structured information types was SnipSnap, developed at Fraunhofer FIRST.1 For

example, SnipSnap allows collaborative editing of UML diagrams within a Wiki page

using special syntax. The RISE project and the subsequent SOP project at Fraunhofer

IESE have elicited the potential of combining Wikis and ontologies for the purposes of

distributed requirements engineering ([DRR05], [DRR07]): Using the same Wiki

principles, users can not only collect requirements, but also redefine the concepts and

relationships used in the requirements model. This flexible and powerful model is

especially appropriate when diverse stakeholders are involved. The SOP project is

implemented on top of the fairly popular Semantic Mediawiki extension ([KVV06]).

Structured information is freely mixed with free-form text.

1 http://snipsnap.org

33



The use of collaborative ontologies for requirements engineering is also the focus of the

OntoWiki ([ADR06]) and SoftWiki ([AF06]) projects at the University of Leipzig, with

a stronger accent on structured information types and browsing and editing of RDF data.

Similarly to the Waves project, SoftWiki tries to address usability and productivity

issues with an intuitive interface, and provides Social Networking functions such as

ratings and comments.

The Waves project is conceptually compatible and complementary with these efforts, as

it shares the vision of a semantic collaborative knowledge base and its access through

Wiki principles. However, it focuses more on the integration of existing information

sources into this knowledge base through a service-oriented architecture, and therefore

its Wiki serves as a complement rather than an alternative to commercial, structured

requirements engineering tools and ALM suites. It also takes a more radical, rich client

approach with respect to usability and uniquely addresses challenges of knowledge

sharing across organizational spaces.

7 Conclusion

The proposed technology enables the scenarios of integrating various existing

information sources, and of sharing knowledge across organizational boundaries. At the

current implementation stage, it is possible to search through a great variety of relevant

sources in Software Engineering, and author knowledge using the described Rich Wiki

Client. The distribution architecture will be implemented in future releases.

References

[ADR06] Auer, S.; Dietzold, S.; Riechert, T.: OntoWiki – a tool for social, semantic collaboration.

In Cruz et al. (Eds.): ISWC 2006. LNCS 4273 pp. 935--942. Springer

[AF06] Auer, S.; Fähnrich, K.-P.: SoftWiki – Agiles Requirements-Engineering für

Softwareprojekte mit einer großen Anzahl verteilter Stakeholder. Statuskonferenz

Forschungsoffensive „Software Engineering 2006“, 26.-28. Juni 2006, Leipzig.

http://www.informatik.uni-leipzig.de/~auer/publication/softwiki.pdf (7.2.2008). Project

web page: http://softwiki.de

[DRR05] Decker, B.; Ras, E.; Rech, J.; Klein, B.; Hoecht, C.: Self-organized reuse of software

engineering knowledge supported by semantic wikis. In: Proceedings of the Workshop

on Semantic Web Enabled Software Engineering (SWESE), ISWC 2005

[DRR07] Decker, B.; Ras, E.; Rech, J.; Jaubert, P.; Rieth, M.: Wiki-based stakeholder

participation in requirements engineering. IEEE Software March/April 2007. SOP

project web page: http://www.sop-world.org

[KVV06]Krötzsch, M.; Vrandecic, D.; Völkel, M.: Semantic MediaWiki. In Cruz et al. (Eds.):

ISWC 2006. LNCS 4273 pp. 935--942. Springer.

http://korrekt.org/papers/KroetzschVrandecicVoelkel_ISWC2006.pdf (7.2.2008). Project

web page: http://semantic-mediawiki.org

[Vö07] Völkel, M.: A semantic web content model and repository, Proceedings of the 3rd

International Conference on Semantic Technologies, SEP 2007.

34


