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Abstract: To facilitate research in comparative genomics, sequencing projects are
increasingly aimed at assembling the genomes of closely related organisms. Given
two incomplete assemblies of two related genomes, the question arises how to use
the similarity of the two sequences to obtain a better ordering and orientation of both
assemblies. In this paper, we formalize this question as the Optimal Syntenic Layout
problem, show that it is in general NP-hard, but that it can be solved well in practice
using an algorithm based on maximal graph matching. We illustrate the problem using
different assemblies of two strains of Bdellovibrio bacteriovorus.

1 Introduction

To facilitate comparative studies, increasingly, genome sequences are assembled for closely
related species or strains, often in parallel sequencing projects [KPEL03, EBR+04]. Given
two incomplete assemblies A and B of two related genomes G and H , the question arises
how to use the similarity of the two sequences to obtain a (partial) ordering and orienta-
tion of each of the two assemblies. This Optimal Syntenic Layout problem is related to,
but different from, the question of aligning two collections of sequences. In an alignment
[NW70, SW81], the goal is to find a layout so that the matches between the two sequences
form a “diagonal”. However, we can expect that rearrangements of parts of G and H have
occurred during evolution, and thus any such diagonal alignment would attempt to “undo”
and thus mask these evolutionary events, which is undesirable.

In this paper we propose a formulation and algorithm for the Optimal Syntenic Layout
problem that aims at finding a “syntenic layout” of two assemblies that maximize the
number of pairs of extended “local diagonals”. Our solution is based on the weighted
graph matching problem. Our approach also addresses the important special case in which
one of the two genomes is available as a complete sequence, and is used to “syntenically
layout” the contigs of the other genome.
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We illustrate the problem and our solution using data from two different sequencing projects,
one on Bdellovibrio bacteriovorus HD100 [RJR+04] and the other on Bdellovibrio bac-
terivorus HI100 [REB+04], two different strains of the same species. We compare assem-
blies of both genomes at a number of different levels of sequencing coverage.

2 Sequence Assembly

The number of published genome sequences is rising daily. In most cases, these sequences
are obtained using some variant of the “whole genome shotgun” approach.

In this approach, an assembly A of a target sequence G is obtained by randomly sampling
many short reads of DNA from G, then sequencing these fragments and then assembling
them into an approximation A of the target sequence. Depending on the size of G and
the amount of resources available, such an assembly project can take a number of months.
During this time, the level of sequence coverage will grow steadily. This is measured
as the x-fold coverage, which specifies the average number of sequenced fragments that
cover any fixed position in the target sequence.

For practical and statistical reasons [LW88], any such random sampling of fragments from
a given target sequence G will miss some portions of G, giving rise to sequencing gaps.
Clearly, these portions will be missing from the obtained assembly A, too, and they will
cause it to break up in to multiple pieces of sequence, called contigs. Another cause for
break-up are repeats in the genome, which are usually more difficult to assemble correctly.
Obviously, the larger the x-fold coverage is, the smaller the number of contigs will be,
and the longer these contigs will be. A value of x = 12 is considered desirable and an
experimental study suggests that one needs at least x = 5, before reasonably long contigs
can be obtained [MSD+00].

An assembly A produced in this way consists of an unordered and unorientated collection
of contigs. (Alternatively, we may also consider an assembly to consist of a set of scaffolds,
that is, collections of contigs that are ordered and orientated with respect to each other
using the “mate-pairs” that arise in “double-barreled shotgun sequencing” [MSD+00].)
The mapping problem is to find their correct layout, that is an ordering and orientation of
the set of contigs based on features whose physical positions along the target sequence G

are known.

In practice, during the course of an assembly project, a number of preliminary assemblies
may be produced from the set of available fragments, that is, for different levels of x-fold
coverage. After all fragments have been collected and a final assembly has been produced,
then additional directed sequencing techniques must be applied to close any remaining
gaps in the assembly, although, due to the relatively high cost of this, many genomes will
remain unfinished.
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3 Assemblies and Matches

Suppose we are given a target sequence G. An assembly A = {a1, . . . , ap} of G consists
of a collection of contigs ai that are putative sub-strings of G.

Let G and H be two genomes with assemblies A = {a1, . . . , ap} and B = {b1, . . . , bq},
respectively. A local sequence comparison of the two assemblies [AGM+90, DPCS02]
gives rise to a collection of matches M = {m1, m2, . . . , mr}. A match m is specified as
(a, x1, x2, b, y1, y2, o), with a ∈ A, 1 ≤ x1 < x2 ≤ |a|, b ∈ B, 1 ≤ y1 < y2 ≤ |b| and
o ∈ {−1, +1}, where |a| denotes the length of a. The interpretation of this is that m is
a direct match between the interval with indices [x1, . . . , x2] in a and [y1, . . . , y2] in b, if
o = +1, or a match in which the sequence of the second interval is reverse-complemented,
if o = −1.

Suppose we are given two assemblies A and B of closely related genomes G and H , and
a collection M of matches between them. How can we use the matches in M to order and
orientate the contigs in A and B relative to one another?

We say that a match m ∈ M is informative, if it is an overlap- or containment match,
but not an end-to-end match. For our purposes, only informative matches are of interest,
and this implies that the two assemblies should not be too correlated, that is, that contig
boundaries should not coincide (that is, the contigs should not start and end at equivalent
positions).

Consider an original match m between two segments g and h of the original target se-
quences G and H , respectively. Let Ag , or Bh, denote the set of all contigs in A, or B,
that have a non-trivial intersection with g, or h, respectively. The original match m will
give rise to a set of matches M ′ ⊆ M between contigs in Ag and Bh. If the two assemblies
are not too correlated, then the set of matches M ′ imposes a local layout of the contigs
contained in Ag and the contigs contained in Bh, as this set of matches must form a single
“local” diagonal.

4 The Optimal Syntenic Layout (OSL) Problem

Suppose we are given two assemblies A = {a1, . . . , ap} and B = {b1, . . . , bq} that are
not too correlated, together with a set of matches M = {m1, . . . , mr}. In the following,
we formulate the problem of determining a layout of A that maximizes the number of pairs
of extended local diagonals, for a fixed ordering of B. By switching the roles of A and
B, it can be used to find an optimal layout for B, too. It will be apparent that the two
problems are independent of each other and thus can be solved separately.

We visualize the data as partitioned into an A × B comparison grid Z, where the cell zij

has width |ai| and height |bj |. The set Mij of all matches between ai and bj is displayed
inside the cell zij . A match m = (ai, x1, x2, bj , x1, x2, o) is shown as a positive line
segment with 45◦ slope, if it is a direct match, i.e. if o = +1, and it is shown as a negative
line segment with −45◦ slope, if o = −1, see Figure 1.

5



PSfrag replacements

m1

m2

m3

m4

c1

c2

c3 c4

zij zkj

ai ak

bj

Figure 1: Here we show an example of cells zij and zkj defined for contigs ai, ak ∈ A and bj ∈ B.
Matches m1, m2 and m4 define left-connectors c1, c2 and c4, respectively, of zij and zkj . The
match m3 gives rise to a right connector c3 of zij . All matches except m2 are direct. The two
connectors c3 and c4 fit together and thus form a possible local diagonal extension, indicating that
perhaps ai should be immediately followed by ak.

Such a line segment α defines a left connector, or right connector, of cell zij , if it touches
or comes close to the left, or right, side of the cell, respectively. Such a connector c =
(y, w, o) has a height y, which is the position where α touches the corresponding side (or
would touch, if it extended to the edge of the cell), a weight w, which is the length of
α, and an orientation o that is ±1, depending on whether α is a positive or negative line
segment.

Consider two cells zij and zkj contained in the same row. Let C
right
ij be the set of all right

connectors associated with zij and C
left
kj be the set of all left connectors associated with

zkj . We say that two connectors c = (y, w, o) ∈ C
right
ij and c′ = (y′, w′, o′) ∈ C

left
kj

form a local diagonal extension, if c′ extends c, that is, if y ≈ y′ and o = o′. We define
the weight of such an extension as w + w′ − |y − y′|, that is, the sum of weights of the
involved matches, penalized by the difference of their heights. (In Section 6 we discuss
this question in more detail.)

In practice, for each pair of cell-sides we form such extensions in a one-to-one fashion
either greedily or by solving an instance of the maximum weight bipartite matching prob-
lem. Clearly, this definition carries over to the other combinations of sides, {left, left},
{left, right} and {right, right}.

Given two columns ai and bj . We define the score of matching the ε-side of ai to the δ-side
of bj as the sum of weights of all local diagonal extensions obtained for cells contained in
the two columns, with ε, δ ∈ {left, right}. Alternatively, one can also use the maximum
weight.

A layout of the assembly A is given by a signed permutation

π : (1, . . . , p) 7→ (±π(1), . . . ,±π(p)),

where | ± π(i)| denotes the position of the contig ai in the ordering, and sign(±π(i))
denotes its orientation.
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Figure 2: Here we show an example of three cells zij , zkj and zlj , all in the same row. Match m2

in cell zij gives rise to a right connector c2 that forms a local-diagonal extension with left connector
c3 of match m3 of zkj . The right connector c4 of m3 forms a local-diagonal extension with left
connector c5 of match m4 in cell zlj . In the corresponding graph G, we link nodes v

right
i and v

left

k ,
and we link nodes v

right

k and v
left

l .

The Optimal Syntenic Layout (OSL) problem is to determine a layout π of A

that maximizes the sum of scores of local diagonal extensions.

In terms of the comparison grid, this corresponds to finding an ordering and orientation of
the columns (or rows) of the grid such that the sum of scores of pairs of adjacent column-
sides (or row-sides, respectively) is maximized.

We now define a simple graph G = (V, E, ω), with vertex set V , edge set E and an edge-
weight function ω : E → R

≥0.

For each column ai of the grid Z we define two nodes, v
left
i and v

right
i , that correspond

to the left and right sides of the column. Consider a pair of nodes vε
i and vδ

j coming from
two different columns ai and aj , with ε, δ ∈ {left, right}. We define an edge e between
the two nodes vε

i and vδ
j , if the score S of matching the ε-side of column ai with the δ-side

of column aj is greater than zero. In this case, we set the weight ω(e) equal to S. See
Figure 2.

Given a layout π of A. We say that an edge e ∈ E between two nodes vε
i ∈ V and vδ

j ∈ V

is realized, if the ε-side of vi is adjacent to the δ-side of vj in the layout. In other words,
we require that |π(i)−π(j)| = 1 and the orientations are appropriate so that the two sides
under consideration are next to each other.

By definition of the graph G, we have:

Lemma 4.1 The OSL problem is equivalent to finding a layout π of A that maximizes the
sum of weights of all realized edges in the graph G.
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5 The OSL Problem is Hard

We have:

Lemma 5.1 The OSL problem is NP-hard.

Proof: We construct a reduction of the TSP problem with all distances in {1, 2} [GJ79].
Given a set C = {c1, . . . , cp} of cities and a distance D(i, j) ∈ {1, 2} for every pair
of cities. Construct two assemblies, A = {a1, . . . , ap}, where ai represents city ci, and
B = {b1, . . . bq}, with q = 2p2. For any two numbers 1 ≤ i, j ≤ p set k = (i− 1)p+ j ∈
{1, . . . , p2} and consider two cells zik and zjk . Place a positive line segment that touches
the right side of zik and another that touches the left side of zjk, so that they form an
extension of weight 1. Also, place two such segments touching the left side of zik and
right side of zjk, respectively. If D(i, j) = 2, then, additionally, set k′ = p2 + k and
place four such line segments in cells zik′ and zjk′ , too. Hence, if ai and aj are adjacent
in the obtained layout, then 1 or 2 will be contributed to the score, depending on whether
the corresponding edge in the input graph has weight 1 or 2, respectively. Given this
construction, the set of optimal layouts of A corresponds precisely to the set of all optimal
tours of the cities. �

6 The Local Diagonal Layout Algorithm

The problem of finding a maximum weight matching in G = (V, E, ω) can be solved
efficiently [Ga73]. Consider such a matching U ⊆ E. For the following discussion, we
add a set F of additional contig edges to the graph: For every pair of nodes v

left
i , v

right
i ∈

V coming from the same contig ai, we add an edge connecting these two nodes. Consider
the graph G′ = (V, U ∪ F ) containing only the matching edges and the contig edges. As
the contig edges themselves form a matching, the graph G ′ consists only of chains and
even-length cycles [Be76].

If the graph contains no cycles, then a solution of the OSL problem is obtained simply by
laying out the contigs of A in any way that preserves the layout induced by the chains. If
the graph contains one or more cycles, then each such cycle must be broken by removing a
matching edge of minimum weight. In this way, each cycle loses less than half of its total
weight. Because there may exist another solution that does not involve cycles, in the worst
case, breaking cycles in this way may produce a solution that has only half the weight of
an optimal solution. Here is a summary of the algorithm:

Algorithm 1 [Local Diagonal Layout Algorithm]

Input: Assemblies A and B, and matches M

Output: A layout for A

Construct the graph G = (V, E, ω), as described above
Compute a maximum matching U ⊆ E
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Let F be the set of all contig edges
Construct G′ = (V, U ∪ F, ω)
For each cycle C in G ′:

Delete the smallest weight edge in C ∩ U

Greedily link all resulting chains into one chain visiting all nodes
Traverse the chain and report the resulting layout.

We have shown the following result:

Theorem 6.1 Algorithm 1 computes a 2-approximation for the OSL problem.

Note that if the graph G′ does not contain cycles, then the obtained result is optimal.
We suspect that such cycles will occur only rarely, and thus the algorithm should usually
produce an optimal result in practice.

We now discuss two technical details that are important. First, in the above description,
we suggest that each individual match m ∈ M may give rise to a left or right connector
of a cell. In practice, matches obtained by programs such as BLAST are usually short
local matches that lie close to a common diagonal along which we really expect to see one
long match. To address this, in our implementation of the algorithm, we use summarized
matches that are obtained by greedily selecting certain diagonals onto which we project
all original matches that lie within a window of width w = 100, say, around the diagonal.
Also, in practice, we say that a summarized match comes close to the side of a cell, and
thus gives rise to a connector, if it contains an original match that is within d = 2000bp,
say, of the side.

Second, in the above description we suggest that the weight of a local diagonal extension
should be w + w′− |y− y′|, where w and w′ are the weights of the two involved (summa-
rized) matches, and |y − y′| is their height different. In practice, we obtain slightly better
results using the following formula: (w)2+(w′)2−h|y−y′|2, with h = 5, say. We suspect
that, as for most algorithms in bioinformatics, additional tuning of certain aspects of the
algorithm will lead to a substantially better performance in practice, but this is beyond the
scope of this paper.

7 Application to Different Assemblies of Two Strains of Bdellovibrio
Bacteriovorus

We now illustrate the optimal syntenic layout problem and the application of our algo-
rithm using data from two different sequencing projects, one on Bdellovibrio bacteriovorus
HD100 [RJR+04] and the other on Bdellovibrio bacterivorus HI100 [REB+04].

The two complete sequences are approximately of the same length and a BLAST com-
parison of them displays a single main diagonal (consisting of many individual HSPs, of
course) from end to end, thus indicating that there have been no significant inversions or
transpositions since the separation of the two strains. We would like to emphasize, how-
ever, that the existence of such a single main diagonal is not a prerequisite for our method.
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(For example, we have successfully applied our algorithm to contigs of Neisseria meningi-
tidis serogroups A and B, whose comparison displays a diagonal that is broken by a major
inversion, not shown here.)

We now compare assemblies of both genomes obtained at different levels of x-coverage.
For each application of the algorithm, we report the number of true positive-, false positive-
and false negative extensions, i.e. pairs of rows or columns that were correctly, incorrectly
or not identified as being adjacent to each other in the true layouts of both assemblies,
respectively.

In Figure 3(a), we show two early assemblies of Bdellovibrio bacteriovorus HI100, con-
sisting of 69 contigs, and Bdellovibrio bacterivorus HD100, consisting of 27 contigs,
together with a collection of BLAST matches, obtained using an E-value threshold of
10−10. Here, grey lines depict the cells of the comparison grid Z, whereas original BLAST
matches appear as black diagonal lines. In Figure 3(b), we show the result of applying our
algorithm to this data. Here, as in all remaining figures, black horizontal and vertical lines
indicate where each run of local diagonal extensions (locally ordered and oriented rows or
columns of the comparison grid) begin and end, and cells in which extendable diagonals
were found are highlighted in grey. Here, the algorithm produced 46, or 9, true positive-
, 2 or 0 false positive- and 17, or 14, false negative extensions in the x- or y-sequence,
respectively.

In Figure 3(c) and (d), we compare two further assemblies of the two strains with each
other, producing 2, or 0, false positive- and 11, or 2, false negative extensions in (c), and
0, or 0, false positive- and 3, or 2, false negative extensions in (d) in the x- or y-sequence,
respectively.

In Figure 3(e), we compare the completed genome of HD100 with an early assembly of
HI100, consisting of 69 contigs. Here, the algorithm produced 54 true positive-, 2 false
positive- and 8 false negative extensions in the x-sequence.

In Figure 3(f), we compare the completed genome of HD100 with a later assembly of
HI100, consisting of 7 contigs. Here, the algorithm produced 3 true positive-, 1 false
positive- and 0 false negative extensions in the x-sequence. The false positive linking the
5th and 6th contigs in the x-assembly is due to an assembly error in the 7th contig of
HI100.

In summary, our implementation of this approach is able to detect and use a large pro-
portion of all extendable local diagonals. The number of false positives is very low, and
can be reduced further by masking repeats in the sequences before computing matches.
An inspection of the false negatives shows that they are usually due to the fact that no
appropriate informative matches are available. It is also interesting to note that this type of
analysis can help to identify assembly errors (or inversions or transpositions between the
two sequences, if present) in either of the assemblies under comparison, even if both are
incomplete, as apparent in Figure 3(d,f).
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(a) (b)

(c) (d)

(e) (f)

Figure 3: In each plot [FDH03], we compare assemblies of strains HI100 (x-axis) and HD100 (y-
axis). We depict a comparison of early assemblies both (a) before, and (b) after, application of the
layout algorithm. In (c) and (d) we show the result of the algorithm when applied to assemblies
at different levels of x-coverage. In (e) and (f), we depict a comparison of the finished genome of
HD100 with two different assemblies of HI100.
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