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ABSTRACT
Toxicity represents a threat to the safety and health of online multi-
player gaming communities. This has been recognized by industry,
academia, and players and led to efforts for combating toxicity, in-
cluding different approaches for predicting toxicity from behaviour.
Despite promising results, such approaches have not yet been able
to meaningfully combat toxicity at scale. In this position paper, we
describe four obstacles that impede usable applied toxicity predic-
tion in multiplayer games that could help to combat harm. We want
to foster a discussion about how user-centered artificial intelligence
approaches may help solve these obstacles.
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1 INTRODUCTION
There is wide agreement among developers [33], researchers [4],
and players [28] that toxic behaviour in online games represents a
danger for the safety and health of game communities. The term
toxicity refers to a wide variety of negative and harmful behaviours,
including harassment or abusive communication (e.g., see [1, 2, 4,
14, 24, 27, 37, 40]).

Toxic behaviours have negative ramifications, such as a neg-
ative influence on player experience [3, 14, 26, 40] and mood re-
pair [7], causing psychological distress, rumination, and social with-
drawal [15, 16, 28, 32, 35], decreased individual and team perfor-
mance [31, 40], negative impact on game developer revenue [4, 20],
and the potential to inflict gendered or racial trauma [16, 25]. Fur-
ther, there is a cyclical nature to toxicity [20, 21], leading to a
normalization of toxicity in gaming communities [2, 4] and high-
lighting the need to break this cycle through interventions.

One of the approaches essential for combating toxicity within
online games is the prediction of toxicity, i.e., detecting whether
behaviour is toxic or represents harassment. While academic re-
search [5, 12, 29, 30, 34, 38, 39, 41] and industry stakeholders [8, 18,
36] have been tackling this challenge, it is as of yet unsolved. In
this position paper, we will provide a short overview of toxicity
prediction and four obstacles to solving the problem of enabling
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effective toxicity prediction, which is one aspect of a larger set of
challenges we need to solve to combat toxicity at large.

We aim to foster a discussion about how user-centered artificial
intelligence methods may contribute to valid and effective methods
for predicting toxicity, which are essential for ensuring safe and
healthy gaming environments, andmay also provide benefits within
other digital spaces, such as social media platforms.

2 PREDICTING TOXICITY
Many approaches have been proposed for predicting toxicity in dig-
ital spaces. Frequently, this task is tackled with supervised learning
approaches that use text as input and predict whether a message is
toxic or represents harassment. This has been a challenge for differ-
ent digital spaces, such as Wikipedia talk page messages [12, 19],
social media platforms [9, 29], and a variety of different multiplayer
gaming environments [5, 17, 18, 36, 38]. Generally, artificial intelli-
gence approaches are well-suited to deal with such tasks.

Previous work on predicting toxic behaviour in digital spaces has
suggested the potential of different approaches to varying degrees.
In non-game contexts, Liu et al. [29] were able to predict hostile
Instagram comments with high performance (up to 84% AUC) and
Zhang et al. [41] were able to predict personal attacks between
Wikipedia editors with 64.9% accuracy. Dessi et al. [12] used deep
learning approaches with long short-term memory models predict-
ing if Wikipedia comments were toxic with an F1 score of up to
95.7%. In games, Blackburn and Kwak [5] achieved AUC scores of
up to 79.9% for predicting if reported players in League of Legends
matches were ultimately punished or pardoned. Stoop et al. [38]
detected toxicity in League of Legends conversations, with F1 scores
of up to 60.0%. Reid et al. [34] achieved were able to predict if Over-
watch matches were toxic with up to 86.3% using features from
in-game communication.

This is also tackled in commercial gaming environments.Machine-
learning based systems are used in commercial games to detect and
combat toxicity, such as in Overwatch [6, 8, 18] and League of Leg-
ends [22, 23], and on competition platforms like FACEIT [36]. Such
prediction approaches are used for different meaningful interven-
tions, e.g., to automatically detect and block slurs or to help detect
and sanction offenders.

However, despite these encouraging results, toxicity and harass-
ment remain a problem within online gaming, as is evident by
recent statistics in 2021 showing that 83% of adult gamers experi-
enced harassment in multiplayer games [28]. Thus, it is apparent
that the promising research has not been applied at scale to practical
solutions that lead to meaningful improvements.

We argue that toxicity prediction in online contexts is generally
challenging, with additional complications arising within a gaming
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context. In the next section, we propose four obstacles that we
need to overcome if we want to enable valid and effective toxicity
prediction. We aim to foster discussion around how user-centered
artificial intelligence approaches may help address these obstacles.

3 OBSTACLES TO TOXICITY PREDICTION
While there are undoubtedly myriad challenges, we present four
obstacles here that are essential to overcome for enabling valid and
effective prediction methods in gaming environments.

3.1 Individual Differences
Individual differences in perceiving something as toxic or not repre-
sent an obstacle for training data that is used in supervised learning
approaches. On one hand, it is challenging to implement models
that predict toxicity at an individual level because it is difficult
to assess information about how a specific individual perceives
situations. Further, not enough information about individuals is
accessible in an applied gaming context, e.g., because of privacy
considerations in applied at-home settings. On the other hand, it
is likely that generalized models that predict at a population level
are not ideal for predicting on an individual level, because of a
large variance in what different players consider toxic. This also
applies to raters who often generate the ground truth labels used
for training data. As such, it is unclear if generalized models are
able to predict at an individual level. This can be quite problematic
in this context.

For example, a model trained with one individual’s labels may
output predictions that differ from an individual’s subjective assess-
ment of amessage, interaction, or situation. Thus, model predictions
may sometimes consider data more toxic than a player, resulting
in situation, in which an intervention that is triggered surprises a
player who may even be opposed. In contrast, this can lead to an
underestimation, i.e., a model predicts that a message is not toxic
(based on average ground truth) but an individual may perceive it
as problematic, which can lead to harm and distress.

Therefore, we need to account for individual differences in the
perception of toxicity to implement valid and effective prediction
methods.

3.2 Context
Context matters! This argument, which is widely accepted in HCI
and related fields like ubiquitous computing, applies to the predic-
tion of toxicity. This relates to subjectivity (e.g., what one player
considers harmless could be offensive to another player), but also
extends to the context in which the interaction happens. Two mes-
sages with the same content may be sent and perceived very dif-
ferently based on the context, for example, someone being called a
“dumbass”, which may be quite offensive in many cases but a joking
and snarky remark when uttered in a group of friends, who have
known each other and think such talk is a hilarious and integral
part of their interaction [17]. In the same way, a message may be
perceived differently based on one’s own mood (e.g., on a bad day)
or the in-game context (e.g., after a mistake that leads to losing a
game vs a funny but ultimately meaningless mishap).

Prediction of toxicity that can account for context should use
methods that are more complex than simple keyword-based ap-
proaches because it is necessary to identify context, intent, and
meaning [10]. The gaming context further complicates prediction
because some toxic behaviours are less overt, such as subtle be-
haviours [4] or in-game behaviours like afking [11]. This means that
no single approach may be easily used to account for all different
types of toxicity.

3.3 Privacy
Privacy considerations are essential because most toxicity happens
in communication between players, resulting in interpersonal com-
munication data that is monitored and analyzed for the prediction
of toxicity. This applies to communication in semi-public channels
(e.g., team or match chats) but is even more problematic if analysis
approaches are applied to non-public channels like direct messages,
where players may have higher expectations of privacy and not
think about others accessing and analyzing their communication.
While it may appear unnecessary to apply toxicity prediction to
non-public channels, it is evident that toxicity can also happen in
such channels, suggesting that interventions and prediction meth-
ods also have benefits for such communication.

Thus, there is an evident conflict between the need to monitor
and analyze communication to ensure safe environments and the
privacy considerations. For example, we suggest that open and
ethical use is essential, e.g., to communicate to players that data
is analyzed and that data is not stored beyond the actual need for
addressing toxicity.

3.4 Practical Application
Practical application is essential when considering the goal of ensur-
ing safe and healthy environments, in which the majority of players
is not regularly confronted with toxicity. This is not a methodolog-
ical challenge but one of applying methods into the real world,
associated with multiple aspects.

First, prediction methods are only useful if they are used and
translate into meaningful action. This raises questions around how
to enable this in an effective and practical way. For example, we need
more research to understand what to do with predicted toxicity,
e.g., which sanctions are suitable to effectively combat toxicity for
good and at scale.

Second, it is difficult to translate academic findings into practice.
Even the best methods are useless if they are not used, suggesting
the need for increased collaboration efforts between academia and
industry to make methods easily usable and applicable in popular
and affected gaming environments.

Third, several approaches are used in commercial settings [8,
18, 36] but rarely there is more information available allowing
these findings or methods to be used in other games. This is part
of a larger problem, in which most of toxic behaviour happens
on digital platforms of private companies (including games but
also social media), which represent effectively private settings with
considerations of intellectual property and competition [13] that
lay in stark contrast with collaboration between developers, which
would be necessary to combat toxicity. We cannot hope to combat
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toxicity at large if game developers consider ’toxicity’ just one more
factor, on which they can outperform their competitors.

Thus, we argue that further work is necessary to tear down
these walls and to build bridges between all stakeholders who
want to combat toxicity, including industry, academia, and game
communities.

4 CONCLUSION AND OUTLOOK
We think that user-centered artificial intelligence methods may
be useful for the context of predicting toxicity in gaming environ-
ments, due to its focus on integrating users into the process, which
may be useful to account for individual differences (e.g., by better
integrating players into the model creation), context (e.g., by in-
corporating context information into the models), considerations
of privacy (e.g., by considering conservative data usage and non-
permanent storage), and challenges of practical application (e.g., by
participative development together with stakeholders). We hope
to stimulate a discussion about how we can apply user-centered
artificial intelligence approaches help solve these obstacles.
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