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Comparing MPI Passive Target Synchronization Schemes on
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Abstract: MPI passive target synchronisation offers exclusive and shared locks. These are the 
building blocks for the implementation of applications with Readers & Writers semantic, like for 
example distributed hash tables. This paper discusses the implementation of MPI passive target 
synchronisation on a non-cache-coherent multicore, the Intel Single-Chip Cloud Computer. The 
considered algorithms differ in their communication style, their data structures, and their semantics. 
It is shown that shared memory approaches scale very well and deliver good performance, even in 
absence of cache coherence.
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1 Introduction

Distributed hash tables (DHTs) are a common approach for fast data access in big data and 

data analytics applications. However, DHTs imply dynamic communication which makes 
an implementation using two-sided communication, i. e. with SEND and RECV operations, 
cumbersome. In contrast, one-sided communication (OSC) with PUT and GET operations is a 

suited programming model for a DHT with its dynamic communication pattern.

Concerning the process coordination, a DHT application follows the Readers & Writers 
model [CS17a]: reads may occur concurrently while inserts have to be done exclusively. 
Hence, a resource has to be locked before it is updated. Typically, writers are given 

preference to avoid readers reading old data. This coordination scheme maps on MPI’s 
passive target synchronization which offers exclusive locks (one writer) and shared locks 
(many readers). In addition, an MPI implementation has much freedom to implement the 

process synchronization for passive target OSC [Me15, p. 448].

This paper discusses different synchronisation algorithms on the experimental non-cache-
coherent 48-core Intel Single-Chip Cloud Computer (SCC) [Ho10]. Figure 1 shows an 

architectural overview of the chip. While core counts steadily increase, the management of 
cache coherence becomes a more challenging task due to that high number of cores and 

high memory bandwidths [Mo15]. Although coherent high-end processors with 64 cores 
are currently available, non-coherent architectures provide an interesting research domain.
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It has been shown in previous work that such nCC shared-memory systems can be easily
programmed with well established technologies like, e. g., MPI [CS17b].
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Fig. 1: Overview of the Intel SCC.

In this paper we compare the performance of three synchronization schemes for MPI
passive target OSC: the message-based scheme from MPICH, the writer preference locks
by Mellor-Crummey and Scott [MS91a] for shared memory systems (MCS-WP), and a
best effort approach originally designed for RMA-capable distributed memory systems by
Gerstenberger, Besta and Hoefler (GBH) [GBH14].

The next section gives an overview over related work. The different synchronization schemes
and their data structures are described in Section 3, their implementation on the SCC
is described in Section 4. Results from a micro-benchmarks are presented in Section 5,
followed by a discussion. Section 6 concludes the paper.

2 Related Work

An early work on the topic of efficient MPI OSC implementations is the discussion for
InfiniBand clusters [Ji04]. Recently, implementation schemes for NUMA-aware locks
on cache-coherent multicore machines are gaining interest [DMS15, GLQ16, KMK17,
CFMC15], but non-cache-coherent architectures are still neglected.

Concerning the SCC, the authors of [AMB12] investigate barrier synchronization on
the SCC and use the Message Passing Buffer (MPB) to store the synchronization data.
In [ASB14], they even exploit unused entries in the rare lookup tables of the chip’s
memory subsystem. The bottom line of this research is that synchronization data should
be placed close to the spinning core. RCKMPI [UGT12] is a tuned message-based MPI
implementation for the SCC and uses the fast on-chip MPB for message transport. One-sided
communication is fully supported but is based on messages as well. In case of MPI’s
general active synchronization, we have already shown that an implementation using
shared memory and uncached memory accesses outperforms the message-based approach
significantly [CS17b]. Similar, Reble et al. discuss the active target fence synchronization
style which they implement on top of an efficient barrier [RCL13].

Regarding Distributed Memory Architectures, Gerstenberger et al. have published perfor-
mance numbers of a distributed hash table application running on up to 32k cores [GBH14].
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They use their own MPI-3.0 RMA library implementation for Cray Gemini and Aries
interconnects called foMPI (fast one-sided MPI). The presented synchronization scheme
for passive synchronization is described in Section 3.1 and adapted for the SCC (see
Section 4). Schmid et al. have proposed a scheme for Readers & Writers locking dedicated
for distributed memory architectures with RMA capabilities like the Cray XC30 [SBH16].
The synchronization data structures are organized hierarchically in a distributed tree.

Subsuming the related work, there are no efforts in passive target synchronization for nCC
many-core CPUs with shared memory like the SCC.

3 Synchronization Schemes for nCC Architectures

This section describes three implementation designs for MPI passive target synchronization.
The first two are known from the literature. The third one describes the default implementation
on the SCC. While [GBH14] presents a best-effort approach for a distributed-memory
machine, the work from [MS91a] addresses scaling on shared-memory machines.

3.1 GBH Best Effort Synchronization

In [GBH14], Gerstenberger, Besta and Hoefler (GBH) present an implementation for MPI
passive target synchronization for the Cray XC super-computers. It is based on atomic
remote direct memory operations (RDMA) operations which are supported by the hardware.
The design uses two stages of counters for each created window object: a single global
counter and per-process local counters. All counters are allocated in memory close to the
owning process. The global counter resides in the memory of a designated process (rank 0).
All counters are accessible by RDMA operations.

The global counter tracks active LOCKALL operations and exclusive locks which are mutual
exclusive. The per-process counter indicates the number of active exclusive and shared
locks. As there can be only one exclusive access at a given time and process, a single bit is
used to indicate such epochs (see Fig. 2).

machine word size

global

local

lockall counter excl. counter

rank 0 shared counter excl. bit

. . . shared counter excl. bit

rank n − 1 shared counter excl. bit

Fig. 2: Counters used by the GBH synchronization scheme.

Whenever a lock of either type is going to be acquired, the respective fields in the counters
are incremented using atomic operations which return the previous value (fetch and add).
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When a conflict is detected, e. g. shared locks are active at a process but an exclusive one
should be acquired, the counter modifications are reverted and the process tries again at
a later time using an exponentially growing back-off. The scheme does not distinguish
between different process types, so any reader may overtake writers.

3.2 MCS Locks with Writer Preference

To avoid centralized spin objects which cause high interconnect traffic, Mellor-Crummey
and Scott proposed MCS locks [MS91a]. Those are based on linked lists of lock objects
that are allocated in shared memory. Each process that wants to enter a critical section by
means of MCS locks appends a list entry which consists of a boolean flag blocked and a
pointer to the next waiting process. The flag is initially set to TRUE. A process that wants to
acquire the lock repeatedly polls the flag in its list entry until it is set to FALSE by a process
which releases its lock.

The main advantage of using one list item per process is that spinning is done only on a
local list item and not on a globally shared one like a single spin lock, for example.

Based on the original MCS locks, which do not differentiate between process types, Mellor-
Crummey et al. present specialized locks that give precedence to either reading or writing
processes [MS91b]. We have implemented MCS locks with writer preference (MCS-WP),
since it fits best to the DHT use case where lots of readers and rare writers are expected.

Independent of the precedence, the proposed lock data structures contain lists for waiting
reader and writer processes as shown in Figure 3. In addition to the lists, there is a state
variable which is a single integer variable. For writer-precedence, the state tracks the number
of active readers and provides flags for indicating presence of interested readers, interested
writers, and active writers. Those are manipulated with atomic operations [MS91b, Sec. 3].
For usage with MPI passive target synchronization, every window i is associated with a
lock data structure Li as shown in Figure 3.
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Fig. 3: MCS-lock based data structure for reader or writer precedence.
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3.3 Message-Based Synchronization

RCKMPI, the MPI implementation for the SCC, uses messages to implement passive target
synchronization. This behaviour is inherited from MPICH’s CH3 device implementation but
varies depending on the configuration. By default, the LOCK synchronization and subsequent
communication operations are deferred until the end of the UNLOCK operation. The library
then sends a control message from the origin to the target process, waits for a reply, i. e. lock
granted message, issues the communication operations, and signals the unlock operation
by setting an according field in the message header of the final communication operation.
The unlock indicator can be piggy-backed in case of a single RMA operation. If no RMA
operation is performed, no messages are sent. However, MPICH/RCKMPI can be configured
to send a control message to the target for lock acquisition at the beginning of the access
epoch. This also ensures transfer of control messages even in the absence of communication.
Although this implements one-sided communication it actually requires participation of the
target to process the synchronization messages.

Independent of the active configuration, the lock requests from different origins are serialized
at the target process. Since the received messages are processed in the order at which they
are received by the target, there is no preference of readers or writers (or lock type).

4 Implementation on the SCC

The SCC is not a product but a research vehicle [Ho10]. Each of the 48 cores has two
integrated 16 KB L1 caches – one for data and instructions – as well as an external unified
256 KB L2 cache. There is no cache coherence between the caches of different cores, but
every core can access all memory location. In addition to main memory, a fast 16 kB
Message Passing Buffer (MPB) is placed on each tile.

All of the of the above synchronization schemes have been implemented in RCKMPI.
Messages exchange is done by writing messages in the receiver’s MPB who polls the buffer
for new incoming messages. This implementation is considered as the baseline version.

The GBH and MCS-WP implementations do not use messages. Instead, the required
data structures are allocated in shared off-chip DRAM memory. Due to the non-coherent
architecture of the SCC, those data structures are polled using uncached memory accesses.
While previous research proved that polling the on-tile MPB or even the Lookup Tables (see
Section 2) reduces the traffic on the interconnect, both approaches are hardly feasible in our
case due to a resource conflict (MPB) or a missing resource management (LUTs). Therefore,
the external DRAM is used as a resource for the synchronization data. As shown in previous
work [CS17a], synchronization data is allocated in a distributed fashion: Per-process data is
stored in the DRAM memory close to the owning core.
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5 Experimental Evaluation

We evaluate the different design schemes using a communication-free microbenchmark.
The experiments were conducted on a SCC system with cores clocked at 533 MHz and
800 MHz for the mesh network and the memory controllers. A total of 32 GB of RAM was
installed on the system. Each core runs Linux 3.1.4 with platform-relevant patches applied.
Software is cross-compiled using GCC 4.4.6 with optimization (-O2), and MPICH 3.1.3
was used as the foundation MPI implementation.

5.1 Microbenchmark description

The employed microbenchmark measures the latency for a pair of LOCK/UNLOCK
operations. No communication is performed between those two operations. The time for
performing these operations is compared for the GBH and MCS-WP implementations as
well as for the message-based but SCC-optimized RCKMPI. Because the default RCKMPI
implementation defers the synchronization, we also measure RCKMPI with a forced message
exchange for synchronization (cf. Section 3.3).

Each process of the microbenchmark performs 1000 pairs of LOCK/UNLOCK calls in a tight
loop. The type of the employed lock is controlled by an input parameter that specifies the
share of shared and exclusive locks each process shall issue. According to that parameter,
every process randomly decides between the two lock types. The target process is chosen
randomly as well and may include the origin process. The access mode (shared or exclusive)
will obviously have an influence on the results. Therefore, three different ratios of shared and
exclusive locks, i. e.. readers and writers, were measured: only shared locks (only readers),
all accesses are made with exclusive locks (only writers) and a mixture of both where shared
and exclusive accesses are equally distributed (see Figure 4a–5).

Since we are interested in the scaling of the different synchronization schemes, we run the
benchmark with different numbers of processes. The processes are mapped according to the
core with matching number. That is, the rows of the SCC’s mesh network are filled before
moving to the next row. In case for 24 processes, the chip’s lower half (see Figure 1) is filled.

From each of the 1000 LOCK/UNLOCK cycles, the required time is measured. Finally, all
samples from all processes are gathered and the median time from all synchronization
operations is computed. This value is shown in the following diagrams for different core
counts. We compare MCS-WP, RCKMPI with both immediate messaging (synchronization
message upon method call) and default behaviour (no messages), and GBH. In addition
to GBH, a version without back-off is included in the evaluation in order to analyze the
impact of the back-off on the synchronization latency. For the version with back-off, the
initial delay between two lock acquisition attempts is 1 µs. This value is doubled for each
consecutive failed attempt. It has been shown for the SCC that the usage of back-offs can
improve the performance of synchronization primitives [RCL13].
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5.2 Results: Shared Locks Only

Figure 4a shows the latency of the different implementations when all accesses are
shared. The RCKMPI implementation with immediate messaging has the highest latency
due to overhead from sending and processing the control messages. The default RCKMPI
implementation includes only library overhead but no message exchange and scales therefore
well. It is slightly slower than both GBH versions due to additional management in the
message-based code path that are not used for the GBH and MCS implementations.
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(a) Shared locks only.
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Fig. 4: Synchronization latencies for the shared-only and mixed cases.

Both GBH versions exhibit nearly constant and identical synchronization latencies because
no conflicts occur in the shared-only use case and thus no back-off is required. Consequently,
the two curves overlap in the plot. Similar, the reason for the constant time is that shared
accesses are not mutual exclusive. In the GBH scheme, acquiring a shared lock only
involves incrementing the shared counter in the target’s local counter (see Fig. 2). Due to
the distribution of the synchronization data and missing exclusive locks, which might cause
more attempts to acquire the shared lock, no contention on these counters is observed on
the SCC.

In case of the of the MCS-WP, the latency is generally higher than for GBH. The latter only
involves incrementing a single per-process counter value, but for MCS the state variable
needs to be checked and list data has to be changed. This causes the operations to take
longer than for GBH.

From the data one can also note an increasing latency for up to 24 processes. After that, the
latency remains nearly constant with a slight drop for 32 processes. This observation can be
attributed to the distributed synchronization data. With up to 24 processes, the two lower
memory controllers of the chip (see Figure 1) have to handle the polling requests of the 12
processes associated to each of them. Additional processes are then handled by the next
memory controllers, but do not increase the load on the already utilized ones.

This is also the reason for the slight latency drop at 32 processes: Since the upper two
memory controllers have to serve fewer processes than the lower two, the median latency



S. Christgau, B. Schnor

reduces. Similar behavior can be identified for the switch from 6 (only handled by MC 0) to
8 processes (MC 1 handles additional polling accesses).

Since for 24 processes the two lower memory controllers experience maximum usage and
because of the distributed data, no further increase of the lock latency is observed when the
number of MPI processes is raised. This is different from the statement in [SBH16, p. 11],
that MCS locks that distinguish between readers and writers do not scale well under heavy
read contention. We are not able to confirm this remark by our experiments on the SCC.

5.3 Results: Lock Type Mix

In Figure 4b, the results for the 50% mix of shared and exclusive locks is displayed. For
this workload, no data — except for two processes — could be acquired for the immediate
RCKMPI variant. The benchmark deadlocked in those cases. Our assumption is that required
responses to control message are not sent when they are expected. This might be due to
absent message processing and might be solved by triggering process through MPI_Test
calls. However, a deeper investigation was out of the paper’s scope.

The default variant of RCKMPI which does not send any message unsurprisingly performs
as in case for shared lock.

For GBH, the latency is slightly increased compared to the previous results. The scaling,
however, remains nearly identical and still shows a constant time for the synchronization
for all process counts. The increased latency can be accounted to the higher probability for
an unsuccessful attempt for lock acquisition. In such a case, the processes perform their
back-off but are able to acquire the lock in a later attempt very soon, since the median
latency only increases by about 3 µs.

Opposite to GBH with back-off, the version without this feature shows a latency that
increases linear with the number of processes. The effect is due to the contention. This can
be explained by a competition for both the global and the per-process counter variables.
This reduces the chance of a lock acquisition for either process type. Especially, the global
counter must be modified both at the beginning and at the end of the lock attempt — notably,
this has to be done also in the unsuccessful case. Since the global counter is a centralized
data structure, contention on the responsible memory controller is likely.

With the exception of the GBH without back-off and the dysfunctional immediate RCKMPI
version, the overall performance and scaling is identical to the previous scenario.

For MCS-WP, an almost identical performance as in the previous experiment is observed.
While two different process types are active, the same data structures are used and the
same operations (state manipulation and list management) are performed. Thus, the overall
performance stays the same.
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5.4 Results: Exclusive Locks Only

Finally, Figure 5 shows the scaling where only exclusive locks are used. The GBH variant
without back-off clearly suffers from the sole usage of exclusive locks and its aggressive
best-effort approach. The effect of contention on the global counter from the previous
experiment is amplified which causes increased latency.

Contrary to that observation, the other synchronization schemes still perform with identical
scaling behavior and similar absolute latency. For GBH with back-off, the latency increases
slightly and approaches MCS-WP. This might be caused by an increased number of attempts
to acquire the lock.

For MCS-WP, the performance is still equivalent to the previous experiments. Because
writers just queue up at the individual per-process queues (cf. Figure 3), the median time to
acquire the lock does not increase. Further, the completely distributed data structures pays
off as no contention occurs.

The immediate RCKMPI variant works without problems in this experiments. However,
the latency is up to about four times higher than for the other implementations. Moreover,
linear scaling can be observed.
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Fig. 5: Latency for exclusive locks.

5.5 Discussion

Although a tuned implementation for message transfer is available on the SCC, it does not
pay off in case for MPI passive target synchronization. Besides issues with deadlocks, which
may be fixable, the observed latency is much higher than for the presented memory-based
approaches that use uncached-memory accesses due to the immanent data transfer and
processing overhead.

Contrary, the memory-based schemes perform with low latencies and nearly constant scaling
and are therefore a favorable choice for nCC shared memory architectures like the SCC.
The implemented synchronization schemes take special care for the distribution of data
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structures and their access pattern. The MCS-WP scheme avoids centralized data, and the
GBH scheme with back-off uses a rate-limited access to its data structures.

6 Conclusion

In this paper, we discussed and evaluated three different synchronization schemes for non-
cache-coherent shared memory architectures, like the SCC. Two memory-based schemes
known from the literature have been implemented for that platform. The evaluation shows
that such schemes are well-suited for nCC many-core architectures both in terms of absolute
performance and scalability. Despite, they employ uncached memory operations, the
approaches even outperform competitors that rely on SCC-optimized message passing.

The experiments also show that the MCS-WP scheme which gives precedence to writers
can be used on nCC systems without scalability or severe performance degradations. The
reason is the avoidance of centralized data structures. To achieve a comparable performance,
the GBH scheme that also uses centralized data structures in addition to distributed ones,
a back-off mechanism appears to be crucial for the median latency. Nevertheless, the
algorithms have to be evaluated in the context of an application in subsequent work. Future
work may also include an analysis how the presented approaches perform on contemporary
processors built from multiple chiplets when taking their inherent NUMA-design and
hardware support for cache coherence into consideration.
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