
Vision of Continuously Assuring Performance

David Georg Reichelt
Universität Leipzig

dg.reichelt@uni-leipzig.de

Stefan Kühne
Universität Leipzig

kuehne@uni-leipzig.de

Wilhelm Hasselbring
Universität Kiel

hasselbring@email.uni-kiel.de

Abstract

When assuring performance, small performance dif-
ferences at code level are difficult to measure at ap-
plication level. Current approaches aimed at perfor-
mance assurance are capable of identifying hotspots
and major performance bugs. Apart from their in-
ability to detect small regressions, they require man-
ual effort for specification and execution. In this pa-
per, we present the vision of continuously assuring
performance by using functional unit tests. Utilizing
small tests allows developers to detect small perfor-
mance differences. Additionally, they do not have to
define workloads manually if they use functional unit
tests, since these are present in most projects. To
achieve this, we propose integrating performance mea-
surements in the continuous integration (CI) process,
accelerating root cause analysis and creating parallel
tests capable of identifying regressions that arise with
parallel use.

1 Introduction

Preventing performance regressions is a challenge for
developers and operators. Performance regressions
can arise at architecture, deployment or code level.
Various tools such as profiling, benchmarking, load
testing and monitoring are specialized to identify per-
formance problems at one or more of these levels.

While these tools provide useful information, they
suffer from two main problems, namely (1) They can-
not efficiently detect small performance differences,
since performance measurements are nondeterminis-
tic and measuring performance differences that are
small in relation to the usual standard deviation of
measurements is difficult and (2) they require manual
effort for configuration and execution (profiling and
monitoring) or for specification of execution scripts
(benchmarking and load testing). Given these prob-
lems, small performance regressions are not found and
may add up over time. Additionally, only highly rele-
vant parts of programs are covered with benchmarks
and load tests due to costs; therefore, issues in other
parts of a program are not detected.

Our vision is that performance regressions, which
are currently too small to be examined, can be found
and understood by measuring transformed functional
unit tests. To evaluate this vision, a Java-prototype of
this vision will be implemented in the project Perma-

nEnt (Performance assurance Efficiently integrated).
The remainder of this paper is structured as fol-

lows: first, the approach pursued by PermanEnt is
described. Next, its components–the CI-integration
of the measurement, the accelerated root cause anal-
ysis, and the test generation–are sketched. Finally,
related work is described and a summary is given.

2 Approach

To identify small regressions, small performance
benchmarks that measure a large share of the code
base of a software are needed. Developing those
benchmarks is not feasible from a cost view. There-
fore, we rely on the unit-test-assumption: “The per-
formance of relevant use cases of a program correlates
with the performance of at least a part of its unit tests,
if the performance is not driven mainly by external
factors.” [16]

Reusing unit tests for performance regression test-
ing suffers from three main problems, namely (1) In
contrast to functional correctness, the fulfillment of
performance requirements cannot be assured by sin-
gle executions since performance behavior is nonde-
terministic [2]. To overcome this, the same work-
load needs to be repeated, which is time-consuming.
(2) While assertions allow developers to trace the rea-
son of failures in functional unit tests, identifying root
causes of performance regressions often requires man-
ual experimentation and is therefore not feasible for
small and frequent regressions. (3) Since the work-
loads of unit tests are non-parallel, the parallel per-
formance of the program cannot be examined.

The research prototype PeASS (Performance
Analysis of Software System Versions) [16] enables
performance measurement of unit tests by transform-
ing them to Performance Unit Tests (PUTs). Since
the measurement process is time-consuming, PeASS
relies on regression test selection [12].

While PeASS automates the performance measure-
ment, the daily usage of unit tests for performance
measurement is limited by: (1) the lack of an inte-
gration of performance measurement in CI processes,
(2) the lack of a root cause analysis, which detects per-
formance changes in a time which is reasonable for a
reaction of the developer and (3) the lack of a method
for identifying performance issues with parallel test
execution. PermanEnt strives for solving these issues



PeASS

Root Cause
Analysis

Test Generation

Source Code

Unit Tests PUTs

Test

Load Test

CI-Integration

Production

Monitoring

Figure 1: Approach of PermanEnt

by: (1) integration of performance unit test mea-
surement into CI, (2) researching methods to speed
up root cause analysis and (3) automatic genera-
tion of tests from existing test data and monitoring
data. This approach is summarized in Figure 1. We
address the solution of each issue in one of the follow-
ing sections. Prototypes of this project will be created
in Java and released under an open source license.

3 Integration of Performance Mea-
surement in CI

To measure the performance of an applications unit
tests in CI, the measurement needs to be techni-
cally integrated into the CI infrastructure used. Af-
terwards, the continuous performance measurement
needs to be able to identify performance changes fast
and with reasonable precision. Therefore, measure-
ments need to be configured individually. Since per-
formance measurements may disturb each other, they
are currently mostly run on stand-alone machines.

Therefore, two research questions arise: (RQ I)
Which configuration (number of VM executions, iter-
ations, etc.) is suitable for identifying performance
regressions? (RQ II) How can performance measure-
ments be isolated from other processes on a machine?

To answer (RQ I), we plan to research the size of
unit tests in terms of method executions and dura-
tions. We plan to automatically generate a configura-
tion which is suitable for identifying changes based on
an unit tests duration and method call count, the min-
imal duration difference and the expected accuracy.
To answer (RQ II), we will research whether isolation
measures, e.g. activation of the linux kernel feature
cgroups1 and setting the JVM RAM limit, are able to
isolate performance measurements from each other.
Thereby, we expect to be able to predict the accuracy
with which performance changes can be identified in
parallel to each other and other processes.

4 Accelerate Root Cause Analysis

Once a performance regression is detected, the devel-
oper needs to know its root cause. Thereby, he can

1https://en.wikipedia.org/wiki/Cgroups

decide whether a performance regression is a prob-
lem which needs to be fixed or whether it is a nec-
essary regression caused by, for example, a functional
change. Root cause analysis (RCA) [4] identifies per-
formance change causes by systematic measurement
of the nodes of a call tree.

Figure 2 visualizes the following. First, the top-
most level, here foo, is measured. If foo() gets
slower, the child nodes in the next level, bar() and
doo() are measured. Then, their child nodes are mea-
sured if each individual node got a regression until no
changes are measured anymore. Then, the node(s)
which contain a regression and have no child contain-
ing a regression are the root cause, here fem(). The
measurement of the individual nodes can be done us-
ing Kieker application monitoring [17]. This process
takes several hours per level. The measurement may
add up to several days if the regression causing node
is far from the root node, which is not feasible in ev-
eryday software development.

Figure 2: RCA
from: [4]

To speed the measurement up,
we plan to answer the following re-
search questions: (RQ III) Can
the use of adaptive monitoring, i.e.
reusing the same JVM and switch-
ing the monitored method, speed up
the RCA? (RQ IV) Can the mea-
surement of partial call trees, i.e.
measuring more than one level at
a time, speed up the RCA?

Answering these questions us-
ing artificial workload is infeasible

since different workloads use specific combinations of
CPU, RAM and I/O access. Therefore, we will use
known performance change causes from our industry
partners. First, we will execute the regular RCA to
determine the root causes and measurement duration.
Second, we will attempt both approaches for speeding
up RCA and check their duration and accuracy.

5 Test Generation

Using unit tests for performance measurement does
not identify issues arising with parallel usage. Paral-
lel unit test execution can detect some performance
issues [9]. Therefore, we will research the question:
(RQ V) Is it possible to identify performance changes
by parallel execution of the same unit tests?

To research this question, we plan to use known
performance regressions from industry partners which
only occur during parallel usage. Then, we will gen-
erate parallel performance unit tests which reuse the
same object instances. The generation will use call
frequencies and orders from production monitoring
data, and root cause analysis data to specifically re-
produce behaviour that exposes performance prob-
lems. Based on the generated tests, we will research
how the parallel execution of the same test methods
can show these known performance regressions.



6 Related Work

Related work (1) identifies performance changes by
continuous assertion, (2) identifies performance prob-
lems or (3) generates performance tests. In the follow-
ing, these groups of related work will be described.

Maddodi et al. [8] give an overview about con-
tinuous performance assertion (1). This is done us-
ing models [10] or measurement of changes [7, 11,
15]. Domain-specific approaches like performance
measurement scripts of the linux kernel [1], Raptor2

for Firefox, and jmh3 for OpenJDK exist. Identify-
ing performance problems (2) happens at architecture
or code level. At architecture level, antipatterns are
identified for example by combining models and mea-
surement results [5]. Furthermore, analysis of mon-
itoring data detects performance anomalies [3]. At
code level, problems can be found by correlation with
code patterns [14]. The generation of performance
tests (3) includes generating propabilistic workloads
by Markov4JMeter [6] and generating realistic load
instances by analysis of behaviour data [13]. None of
the methods identifies small performance regressions
at code level. With PermanEnt, we close this gap.

7 Summary

We presented our vision of continuous performance
assurance in software development processes by the
reuse of unit tests. Our approach integrates the mea-
surements in CI on regular basis by automatically
determining the configuration and isolating the pro-
cess from other processes on the machine, acceler-
ates root cause analysis by reusing the same JVM or
measuring more than one level at a time, and gener-
ates parallel performance tests. By this approach, we
aim for identifying performance changes at the code
level. Thereby, regressions which are currently not
detectable or too time-intense to fix can be avoided.

Acknowledgements This work is funded by the
German Federal Ministry of Education and Research
within the project “Performance Überwachung Ef-
fizient Integriert” (PermanEnt, BMBF 01IS20032D).

References

[1] T. Chen, L. I. Ananiev, and A. V. Tikhonov.
“Keeping kernel performance from regressions”.
In: Linux Symposium. Vol. 1. 2007, pp. 93–102.

[2] A. Georges, D. Buytaert, and L. Eeckhout.
“Statistically rigorous java performance evalua-
tion”. In: ACM SIGPLAN Notices 42.10 (2007),
pp. 57–76.

[3] N. S. Marwede et al. “Automatic Failure Diag-
nosis in Distributed Large-Scale Software Sys-
tems based on Timing Behavior Anomaly Cor-
relation”. In: ECSMR. 2009.

2https://wiki.mozilla.org/TestEngineering/Performance/Raptor
3https://openjdk.java.net/projects/code-tools/jmh/

[4] C. Heger, J. Happe, and R. Farahbod. “Au-
tomated Root Cause Isolation of Performance
Regressions During Software Development”. In:
ICPE 13. Prague, Czech Republic: ACM, 2013.

[5] A. Wert, J. Happe, and L. Happe. “Supporting
swift reaction: Automatically uncovering per-
formance problems by systematic experiments”.
In: ICSE. 2013.

[6] A. van Hoorn et al. “Automatic extraction of
probabilistic workload specifications for load
testing session-based application systems”. In:
ICPEMT (ValueTools). ICST. 2014.

[7] W. Shang et al. “Automated detection of per-
formance regressions using regression models
on clustered performance counters”. In: ICPE.
2015.

[8] G. Maddodi et al. “The daily crash: a reflection
on continuous performance testing”. In: ICSEA
(2016).

[9] M. Selakovic and M. Pradel. “Performance is-
sues and optimizations in javascript: an empiri-
cal study”. In: ICSE. ACM. 2016, pp. 61–72.

[10] A. Brunnert and H. Krcmar. “Continuous per-
formance evaluation and capacity planning us-
ing resource profiles for enterprise applications”.
In: JSS 123 (2017).

[11] J. Chen and W. Shang. “An Exploratory Study
of Performance Regression Introducing Code
Changes”. In: IEEE ICSME 2017. IEEE. 2017.

[12] D. G. Reichelt and S. Kühne. “Better Early
Than Never: Performance Test Acceleration by
Regression Test Selection”. In: Companion of
the 2018 ACM/SPEC ICPE. Berlin, Germany:
ACM, 2018, pp. 127–130.

[13] C. Vögele et al. “WESSBAS: extraction of
probabilistic workload specifications for load
testing and performance prediction—a model-
driven approach for session-based application
systems”. In: SoSyM 17.2 (2018), pp. 443–477.

[14] J. Chen et al. “Analyzing performance-aware
code changes in software development process”.
In: ICPC. IEEE Press. 2019, pp. 300–310.

[15] C. Laaber. “Continuous software performance
assessment: detecting performance problems of
software libraries on every build”. In: ACM SIG-
SOFT ICSTA. 2019, pp. 410–414.

[16] D. G. Reichelt, S. Kühne, and W. Hasselbring.
“PeASS: A Tool for Identifying Performance
Changes at Code Level”. In: ACM/IEEE ASE.
2019.

[17] W. Hasselbring and A. van Hoorn. “Kieker: A
monitoring framework for software engineering
research”. In: Software Impacts 5 (2020).


	Introduction
	Approach
	Integration of Performance Measurement in CI
	Accelerate Root Cause Analysis
	Test Generation
	Related Work
	Summary

