
cba

J. Michael, J. Pfeiffer, A. Wortmann (Hrsg.): Modellierung 2022 Satellite Events,
Digital Library, Gesellschaft für Informatik e.V. 106

Modeling an Anomaly Detection System with SpesML

An Experience Report

Maximilian Junker1, Henning Femmer2

Abstract: SpesML is an instantiation of the SPES methodology for cyber physical systems using
SysML. However, SpesML is still under development and urgently requires evaluation with practical
examples. This experience report describes our study of using SpesML for an anomaly detection
system. The goals of the case study are to evaluate feasibility, benefits, and shortcomings of both the
tool and the methodology iteratively at early stages of the project. The results are already promising
with respect to both methodology and tool; however, the work continuously identifies suggestions for
adaptations and future work regarding both.

Keywords: Model-based Systems Engineering (MBSE), Iterative Development, SPES, SpesML

1 Introduction

Many companies are currently discussing introducing Model-based Systems Engineering
(MBSE) into their processes. However, adopting MBSE in the industrial practice still comes
with considerable effort to define, implement, and customize a suitable MBSE method and
tooling.

The SPES series of projects are a joint effort by industry and academia to provide a
methodology for MBSE to ease introduction [Br12]. Its primary aim is to base MBSE on a
precise system model. Previous project succeeded in defining this methodology.

In the SpesML project the additional aim is to port SPES to SysML, a standardized notation
that is picking up dissemination in industry, and to provide a tool that supports the SPES
method. Part of such an endeavor is then, of course, to validate the developed methods and
tools in exemplary cases.

In this work, we present the case of developing an anomaly detection system using the
SpesML methodology. Due to the early stage of both methodology and research, this paper
qualitatively evaluates the feasibility of the methodology, as well as the expressiveness and
usability of the tooling.
1 Qualicen GmbH, Rosa-Bavarese-Straße 15, 80639 München, Germany, maximilian.junker@qualicen.de
2 FH Südwestfalen University of Applied Sciences, Haldener Straße 182, D-58095 Hagen, Germany,
femmer.henning@fh-swf.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:maximilian.junker@qualicen.de
mailto:femmer.henning@fh-swf.de


Modeling an Anomaly Detection System with SpesML 107

In the following, in Sec. 2 first look at background and related work. Afterwards, in Sec. 3,
we describe the case study and the different iterations, in which we created the model. We
then describe the resulting model in Sec. 4. Finally, we discuss these results w.r.t. to the
aforementioned research questions in Sec. 5, and summarize the presented work in Sec. 6.

2 Background and Related Work

This work is based on the MBSE frameworks SPES and SpesML. SpesML itself is based
on SysML, for which few methodologies exist. In the following, we summarize these and
provide pointers for further reading.

2.1 SysML and SysML Methodologies

SysML is a standardized modeling language for systems engineering. It is originally based
on UML but extends UML to better match the needs for modeling systems instead of
software. Please refer to [FMS14] for a detailed introduction into SysML [OM19]. SysML
however, is a language, not a methodology. It therefore only provides the building blocks
and endless possibilities how to apply the language.

Various approaches have tried to fill this gap. In no particular order, the most prominent
approaches probably are Dassault’s ownMagicGrid [Mo20], the ARCADIA approach [Ro16;
Ro17] strongly tied to the eclipse capella tool3, and the SYSMOD methodology [We16].

2.2 SPES & SpesML

For simplicity, we do not want to explain SPES in all detail here. Please refer to any of the
published material for fundamentals [Bö14a; Br12], extensions [Bö21; Po16], case studies
[Bö14b] or introduction methodology [We21] for this. Instead, we just provide a very rough
overview in this chapter.

SPES is a framework for MBSE. It defines a set of models to describe different aspects of a
system under development with varying level of detail. To this end, SPES defines four core
viewpoints:

• Requirements Viewpoint: Contains the requirements to the system.

• Functional Architecture Viewpoint: Contains the system function of the system and
breaks those down into whitebox functions.

3 https://www.eclipse.org/capella/



108 Junker Maximilian, Femmer Henning

• Logical Architecture Viewpoint: Contains a component architecture of the system
which is independent from the technical realization.

• Technical Architecture Viewpoint: Contains an architecture of technical, discipline-
specific components (e.g., mechanical components and software components)

Additionally SPES defines the concept of layers of granularity which allows to identify
subsystems and develop those independently. Finally, all models in SPES are based
on a common universal interface model, a common system model, and an overarching
architecture model providing the base for refinement and tracing across viewpoints and
levels of granularity.

While SPES is independent of a specific tool and modeling language, SpesML is an
instantiation of SPES using SysML and the commercial modeling tool Cameo Systems
Modeler4 by 3ds Dassault Systemes. The SpesMLworkbench is a plugin to Cameo providing
SPES concepts as well as advanced analyses and simulation in Cameo.

2.3 Research Gap

Currently, there are no published experience reports for applying SPES to SysML with
SpesML. This work addresses this gap.

3 Study Setup and Execution

In this chapter, we describe the goals of the study, the study object, and how the study was
executed.

3.1 Goals of the Case Study

At this early stage, the goal of this case study is to identify potential for improvement in the
method as well as in the tool. In consequence, the goals of the case study are two-fold:

• First, the case study shall evaluate the applicability of the SPESmethod and potentially
serve as a blueprint for creating MBSE models based on SPES.

• Second, the case study shall evaluate the expressiveness and usability of the SpesML
tooling.

4 https://www.3ds.com/products-services/catia/products/no-magic/cameo-systems-modeler/



Modeling an Anomaly Detection System with SpesML 109

3.2 Study Object: Anomaly Detection

The System under Development is an anomaly detection system (ADS). The ADS example
is taken from the following real world problem: When sensors fail, it is often not obvious
that they are leaving a nominal operation mode, e.g., but not replying anymore at all. Instead,
the sensors continue providing data, but just incorrect data. This is usually recognized by
irregularities (i.e., anomalies) in the provided sensor data. The main task of an ADS system,
therefore, is to use sensor data originating from a monitored system (e.g., a machine) to
detect anomalies which could potentially lead to damage of that system. The ADS works in
two phases: In the first phase it monitors the sensor data while the monitored system works
nominal. From the data gathered in this way, the ADS creates a benchmark. In the second
phase, the ADS uses this benchmark to asses the sensor data and determine if there is an
anomaly.

3.3 Study Subjects

The model was created by the two authors of this work, as well as two further employees of
Qualicen GmbH. Three modelers are SysML and SPES experts, whereas for one modeler it
was his first expose to SPES, but not his first to SysML.

3.4 Case Study Execution

The case study was conducted during the course of the research project. The tooling used
was developed in parallel with the study execution and the development of the model.
Accordingly, the model was created in several iterations. In each iteration we changed the
model according to changes in the method as well as integrated new aspects.

During the course of the modeling, we documented findings regarding the applicability of
the method, possible improvements, and workarounds. However, we did not perform any
specific analysis to uncover problems, but instead used an opportunistic approach. Hence,
the list of issues cannot be considered complete.

Iteration 1: Scope and high-level requirements In the first iteration, we defined the
scope of the system under development and developed an initial set of high-level stakeholder
requirements. At this very early stage of the research project, there was only preliminary
tool support. We nevertheless created this scope document and the requirements in the tool
as Cameo supports these artifacts out of the box and we could later make adoptions as the
SpesML tool made progress.



110 Junker Maximilian, Femmer Henning

Iteration 2: Initial logical architecture In the second iteration, we would have ideally
designed the functional viewpoint. However, since the logical viewpoint of SpesML was
finished earlier, we decided to create a prototype of the logical architecture ahead, which we
would later refine. Therefore, we created an initial logical architecture in the second iteration,
where we defined coarse components, e.g., for data processing, storage, and interfacing.

Iteration 3: Requirements Refinement & Functional Architecture In a third iteration,
we refined the initial coarse grained stakeholder requirements with a larger set of fine-
grained system requirements. These included functional requirements as well as quality
requirements and design constraints. From the functional requirements we developed a
functional black-box model, containing the system functions located at the system interface.
We then refined these black-box functions by giving a functional white-box model for each
system function. We added trace-links connecting the different requirements levels as well
as connecting the requirements to the functional architecture.

Iteration 4: Refined logical architecture and simulation In the fourth iteration, we
refined the logical architecture to faithfully realize the functional architecture and the
requirements. We further added behavior descriptions to logical components in order to be
able to simulate the components.

4 Resulting Model

In the following, we show the models developed in the requirements-, logical-, and functional
viewpoint. Although there is a preliminary technical viewpoint available, we will not go into
details here, since at the time of writing, the tool support and the method for the technical
viewpoint has not been completed yet.

4.1 Requirements Viewpoint

In the requirements viewpoint we have three main artifacts: (1) the scope document, (2)
the stakeholder requirements, and (3) the refined system requirements. For the scope
document we used the Free Forms Diagram, which is provided by Cameo and which
supports creating informal documents containing text and images. The document describes
the ADS and provides background information. For the stakeholder requirements and the
system requirements, we created a SpesML Requirements Package as well as a SpesML
Requirements Table. An excerpt can be found in Fig. 1. It shows the a subset of the
functional requirements, focussing on reporting aspects (i.e. querying the sensor data by
various variables). The only further requirements attributes are status, text, and type.



Modeling an Anomaly Detection System with SpesML 111

Fig. 1: An excerpt of the system requirements table.

4.2 Functional Viewpoint

For the functional viewpoint we first created a functional black-box model which contains
the system functions (i.e., the functions located at the system boundary). For ADS, the
black-box model consists of three system functions (see Fig. 2):

1. Manage Benchmarks to create and manage benchmarks of sensor data,

2. Detect Anomalies to monitor a system for anomalies during regular application, and

3. Reporting, to allow to retrieve historical sensor data and warnings based on a query.

Additionally, the method allows to have communication between black-box function, when
the communication relates to a mode of the system. In our case, we used such mode channels
to model the communication of created sensor benchmarks and warnings.

For each system function we created a whitebox model detailing how a system function is
realized by a network of communicating whitebox functions. Fig. 3 shows an example of the
whitebox model for the system function Reporting. In this case the whitebox model consists
of eight whitebox function describing the internals of the black box system function. Note
that the interface seen from the black-box perspective is the same as seen from the whitebox
perspective.



112 Junker Maximilian, Femmer Henning

Fig. 2: Functional Black-Box Architecture of the Anomaly Detection



Modeling an Anomaly Detection System with SpesML 113

Fi
g.
3:
W
hi
te
bo
x
m
od
el
of
th
e
sy
st
em
fu
nc
tio
n
Re
po
rti
ng



114 Junker Maximilian, Femmer Henning

4.3 Logical Viewpoint

The logical viewpoint of the ADS describes how the functionality described by the
functional viewpoint can be realized in a consistent architecture. Where in the functional
architecture duplicate functionality exists, e.g., for preprocessing, this is resolved in the
logical architecture (for example by a central data processing component). We created a
logical architecture (see Fig. 4 with several decomposition levels (not to confuse with layers
of granularity). Most components on the highest level were further broken down into further
logical components.

Just when we could not break down a component any further, we modeled the behavior
of the component using a state machine. Fig. 5 shows the state machine of the model
controller. This component controls wether the system is recording a benchmark, performing
monitoring or none of those.

4.4 Tracing

Apart from creating the artifacts outlined above, we established tracing relationship between
different artifacts. Specifically, we created the following types of trace links

• From stakeholder requirements to system requirements

• From quality system requirements to functional system requirements, when a quality
requirement (e.g., security) is realized through a system function or a functional
requirement to a system function

• From functional requirements to black-box functions and whitebox functions

• From requirements to logical or technical components, in case a requirement is not
realized by a functionality.

• From whitebox functions to logical components

Figure 6 shows an extract of the trace links between the system requirements and the
functional architecture.

5 Discussion: Feasibility and Findings

The goal of the case study was, first, to evaluate the applicability of the SPES method, and,
second, to evaluate the expressiveness and usability of the SpesML tooling.

Overall, we could so far successfully model the ADS. However, we found the following
issues: During the modeling and project internal review rounds we gathered issues regarding
the method and the current tooling. Below we report a selection of these issues.



Modeling an Anomaly Detection System with SpesML 115

Fi
g.
4:
Lo
gi
ca
lA
rc
hi
te
ct
ur
e
of
th
e
A
no
m
al
y
D
et
ec
tio
n



116 Junker Maximilian, Femmer Henning

Fig.5:State
M
achine

ofthe
M
odelC

ontrollercom
ponent



Modeling an Anomaly Detection System with SpesML 117

Fi
g.
6:
Ex
ce
rp
to
ft
he
tra
ci
ng
lin
ks
be
tw
ee
n
sy
st
em
re
qu
ire
m
en
ts
an
d
fu
nc
tio
na
la
rc
hi
te
ct
ur
e



118 Junker Maximilian, Femmer Henning

• Requirements: Currently there is the possibility to categorize requirements, link
requirements to realizing model elements, and link requirements to each other.
However, as pointed out in a review round, often requirements originate from the
architecture work. Therefore, it would be helpful to link requirements to the design
decision from which they originated.

• Tracing: Currently it is possible to trace requirements to whole functions. It is also
possible to trace functions to logical components. However, especially in case of
large interfaces, it would be helpful to create traces on a more fine granular level, e.g.,
between requirements and ports, for example to ease requirements verification and
validation.

• Compatible ports: In order to be compliant with the underlying formal universal
interface model, there are strict rules regarding the compatibility of ports. However,
this leads to an inflexibility regarding the connection between ports and in general to
a large number of ports.

• Behavior modeling: Currently, there are specific rules regarding the formulation of
guards and effects in state machines, however advanced tool support (e.g., autocom-
pletion in guards) is missing. This would ease the formulation of valid behavior
models. Furthermore, currently only state machines can be used to model behavior.
Certain types of behavior, e.g., data processing, are not naturally modeled with state
machines. In this case, other types of behavior models could be beneficial.

W.r.t. the aforementioned goals, we could see the behavior modeling aspect as a future issue
in expressiveness. However, since it did not impact us in our study, we suggest to analyze
this issue in future work. For our own system under development, we did not identify gaps
in expressiveness, neither in the tooling nor the methodology. We did however, identify a
set of potential issues which could improve the usability in future work.

6 Summary

In this work, we gave an experience report on a case study that we conducted in the context
of MBSE. With this report, we demonstrated the current state of the SPES modeling method
and the SpesML modeling workbench based on Cameo Systems Modeler. We showed, at
the example of an Anomaly Detection System, the models in the requirements-, functional-,
and logical viewpoint. The focus of the execution of the study, however, was the analysis of
the methodology and tooling against expressiveness and usability. The results show that we
were able to model the ADS using the SpesML methodology and tooling. However, during
the modeling, we identified four suggestions for adjustments.

The presented work was heavily influenced by the current status and the incremental
improvement of the tooling during the project, as well as by the inside knowledge and
experience of the modelers. Future work will therefore (1) extend the model in the technical



Modeling an Anomaly Detection System with SpesML 119

viewpoint and execute simulations, (2) derive hypotheses on the quantitative and qualitative
improvements through the method, (3) conduct further studies on different study objects and
with other study subjects, in particular non-insiders as modelers, and finally (4) quantify the
feedback and analysis provided based on the derived hypotheses.

7 Acknowledgements

We want to thank Alexander Knerr for his contributions during creation of the model. This
work was funded by the German Federal Ministry of Education and Research (BMBF)
under grant no. 01IS20092K.

Literatur

[Bö14a] Böhm, W.; Henkler, S.; Houdek, F.; Vogelsang, A.; Weyer, T.: Bridging the
gap between systems and software engineering by using the SPES modeling
framework as a general systems engineering philosophy. Procedia Computer
Science 28/, S. 187–194, 2014.

[Bö14b] Böhm, W.; Junker, M.; Vogelsang, A.; Teufl, S.; Pinger, R.; Rahn, K.: A formal
systems engineering approach in practice: An experience report. In: Proceedings
of the 1st International Workshop on Software Engineering Research and
Industrial Practices. S. 34–41, 2014.

[Bö21] Böhm, W.; Broy, M.; Klein, C.; Pohl, K.; Rumpe, B.; Schröck, S.: Model-Based
Engineering of Collaborative Embedded Systems: Extensions of the SPES
Methodology. Springer Nature, 2021.

[Br12] Broy, M.; Damm, W.; Henkler, S.; Pohl, K.; Vogelsang, A.; Weyer, T.: Intro-
duction to the SPES modeling framework. In: Model-Based Engineering of
Embedded Systems. Springer, S. 31–49, 2012.

[FMS14] Friedenthal, S.; Moore, A.; Steiner, R.: A practical guide to SysML: the systems
modeling language. Morgan Kaufmann, 2014.

[Mo20] Morkevicius, A.; Aleksandraviciene, A.; Armonas, A.; Fanmuy, G.: Towards
a common systems engineering methodology to cover a complete system
development process. In: INCOSE International Symposium. Bd. 30. 1, Wiley
Online Library, S. 138–152, 2020.

[OM19] OMG: OMG Systems Modeling Language (OMG SysML), Version 1.6, Object
Management Group, 2019, url: http://www.omg.org/spec/SysML/1.6/.

[Po16] Pohl, K.; Broy, M.; Daembkes, H.; Hönninger, H.: Advanced model-based
engineering of embedded systems. In: Advanced Model-Based Engineering of
Embedded Systems. Springer, S. 3–9, 2016.

http://www.omg.org/spec/SysML/1.6/


120 Junker Maximilian, Femmer Henning

[Ro16] Roques, P.: MBSE with the ARCADIA Method and the Capella Tool. In: 8th
European Congress on Embedded Real Time Software and Systems (ERTS
2016). 2016.

[Ro17] Roques, P.: Systems architecture modeling with the Arcadia method: a practical
guide to Capella. Elsevier, 2017.

[We16] Weilkiens, T.: SYSMOD-The systems modeling toolbox-pragmatic MBSE with
SysML. http://model-based-systems-engineering.com, 2016.

[We21] Weyer, T.; Goger, M.; Koch, W.; Kremer, B.: Implementation Strategy for
Seamless Model-based Systems Engineering. ATZ worldwide 123/7, S. 66–71,
2021.


