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Abstract: The problem of limited sensor resolution, although usually ignored in target
tracking, occurs in multi-target scenarios whenever the target distance falls below the
size of the sensor resolution cell. Typical examples are the surveillance of aircraft in
formation, and convoy tracking for ground surveillance. Ignoring the limited sensor
resolution in a tracking system may lead to degraded tracking performance, in par-
ticular unwanted track-losses. In this paper, an extension of the resolution model by
Koch and van Keuk to the case of arbitrary object numbers is discussed. The model is
incorporated into the Joint Probabilistic Data Association Filter (JPDAF) and applied
to a simulated scenario with partially unresolved targets.

1 Introduction

Generally, target tracking is separated into data assignment and kinematic filtering (see e.g.
[BP99]). For both steps appropriate sensor models have to be developed which are simple
enough to be feasible for a tracking algorithm, however, still cover the essential features
important to tracking such as measurements errors and resolution properties. When the
distance between targets is small compared to the measurement error, the assignment be-
tween targets and detections becomes ambiguous, leading to a fast growing number of
possible data assignments. When, on the other hand, the target distance becomes smaller
than the size of the resolution cell, there is an additional source of ambiguity as a given
detection may result from the measurement of two or more targets. Usually, this resolution
problem is neglected in the design of target tracking algorithms. In many situations, this
is a reasonable assumption, but there are important cases when the resolution capabilities
of the sensor cannot be ignored [DF94]. Typical examples of when objects are closely
spaced in relation to the sensor resolution is the tracking of aircraft in formation, and
convoy tracking for ground surveillance. For such applications, ignoring the limited sen-
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sor resolution may lead to degraded tracking performance, in particular due to premature
deletion of tracks.

The ability of a sensor to resolve several objects can be described by the resolution prob-
ability. An important aspect of sensor resolution is its dependence on the sensor—target
distance. This property has been covered in the resolution model by Koch et al. [KvK97]
but is absent in traditional grid-based approaches [CBS84, MCCS87]. Until recently, to
the best of our knowledge, the existing resolution models have been limited to only two
targets. The present paper describes a generalization of the resolution model [KvK97]
to arbitrary target numbers and the incorporation of the model into the Joint Probabilis-
tic Data Association Filter (JPDAF) [FBSS83]. We also present results of a simulated
scenario with resolution limitations, where the JPDA filter with the proposed resolution
model is shown to yield better tracking results than the ordinary JPDAF.

2 Problem formulation

The ultimate goal of a tracking filter is to calculate the posterior density p(xx|Z*) of the
joint target state vector Xy, given all measurements Z* up to, and including, the current
time index k. For the N-target case, the joint target states is described as

T
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where X;:) is the state of target . Further, the collection of measurements up to time index
k is given by the set Z* = {Zl, Zo,..., Zk}.

In order to perform the calculation of the posterior density in the presence of resolution un-
certainty, we need to model the measurements from an unresolved group of targets (hence-
forth called group target), and to describe the probability of resolution for that group. We
also need to model the motion of the targets. At time index k, a sensor produces M}, ob-
servations which are either target-generated or spurious. As is common in most tracking
algorithms, we assume that the clutter measurements are described by a spatially homoge-
neous Poisson process with intensity A.

Group measurement model and process model: We assume a simple model for the
measurement of an unresolved group of targets (henceforth referred to as a group mea-
surement). The model does not capture the true nature of a group measurement, but serves
the purpose of illustrating the proposed framework. In general, more refined group mea-
surement models can be used within the framework.

The assumed model states that a group measurement can be described as a measurement
of the group center, where the center point is given by the arithmetic mean of the involved
target states. That is, for an unresolved group of n, targets (possibly one), whose state

vectors are gathered in the joint vector X7, their group measurement Z}: ) s described by

ZZU) _ Hngxi + ui,ng, )

914



where H,,, = [H,--- ,H]/n, and where u}""’ ~ N(O R, ) is the measurement noise
for an n4-target group. Typically, the measurement noise covariance matrix increases with
increased number of targets in the group.

The (potentially correlated) motion of the multiple targets are described, as usual, by a
discrete time Gauss-Markov process model.

Resolution model: The multi-target resolution model of [SUD10] describes the resolu-
tion probability for a group of arbitrary, but known, number of targets, and it is a gener-
alization of the two-target model in [KvK97]. For a certain pair of targets x,(;), x,(j ), the
probability that they are unresolved is, according to [KvK97],

Nres i35\ 2
PG ) = [T ") 3
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where N, is the dimension of the measurement space (2 for range and azimuth), Abdgy
is the distance between the predicted positions of targets 7 and j in dimension z;, and ¢,
describes the resolution capabilities of the sensor in dimension x;. The dimension can for
example be z; = r for range, or 2; = ¢ for azimuth angle. The probability P, (x,(;), x,(j))
can also be written as a scaled multivariate Gaussian [KvK97]

P,(x\" ) = [27R, n | PN (0; A% s, Ry v, ), (4)

res

where A"Jx;, is a vector with the distances between the target positions in each dimension,
and R, n, o dlag{o%ﬂ1 ey aiNm }. For range and azimuth measurements, and small
A, this can easily be generalized to Cartesian coordinates by a rotation by the average
angle @ = (M) + »(2) /2. The Gaussian shape of the resolution probability will allow
Kalman filter-like updates of the probability density function (pdf).

To extend the model to arbitrary target numbers, we assume the resolution probability to
be pairwise independent. Resolution events can be described by a graph representation
[SUD10], where each node (vertex) in the graph represents a target. Two targets are then
mutually unresolved if they are connected by an edge in the graph. Further, a group of
targets is unresolved if there exists a walk in the graph through all target vertices. Con-
sequently, there are several graphs which generate the same target group. The probability
for a group of unresolved targets as well as for the whole graph, or “subgroup pattern”,
V, can be expressed in terms of products of the probabilities for being unresolved or re-
solved, P, or (1 — P,), respectively [SUD10]. As one exploits a “negative” sensor output
for estimating the multi-target state, it is sometimes denoted as “negative information”
update.

3 Data Assignment

In standard tracking approaches [BP99], the unknown assignment between targets and
detection are treated as hidden variables, and the updated pdf is marginalized over all
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feasible data assignments. In the case of possible unresolved measurements, the sum over
assignments is split into two steps: first we sum over all possible target subgroup patterns
V, defined above. Applying Bayes theorem, the sum is:

plox12) o 3P (Ve (2ol Vi 24 (5)

In a second step, we marginalize the likelihood function in the sum (5) above over all data
assignments d € D()) for a given subgroup pattern V:

P(Ze|V.xi) = Y p(Zi|V.d.xi) Pr{d]V,x;}. 6)
deD(V)

Explicit expression for the pdf and likelihood function are given in [SUD10].

4 JPDA filter incorporation

Under the assumptions mentioned above (linear, Gaussian measurement and process mod-
els) the updated multi-target pdf, eventually, is given as:

Xk-|Zk Z Z Z V“d./\/ xk,xk‘k und P}j‘gd), @)

VY uwel (V) deD(V)

where the normalized scaling factors ¢¥'*¢ depend on the data association probability
Pr{d |V, Xy}, the graph and state vector likelihood p(Zk |V, d, xk) and the graph proba-
bility Pr{V|xk}. The sum over v € U comes from the so-called “negative-information”
update, discussed in Sec. 2, where each update with a resolved pair of targets doubles the
number of Gaussian components.

The standard JPDA filter makes a Gaussian approximation of a Gaussian mixture at each
time step. Similarly, a JPDA filter with a resolution model should make a Gaussian ap-
proximation of the mixture in (7). In principle, JPDA approximations on different level are
possible [SUD10]. Here, we first perform a moment matching over the data association
hypotheses for a given graph, and then make a second moment matching over the set of
graphs, after negative information update.

5 Simulation Results

We study a simple simulated tracking example with two targets. In the scenario, the targets
are first approaching each other, then move in parallel, and finally separate (see Fig. 1).
Due to limited sensor resolution, the two targets are not always resolved. Since the targets
are closely spaced, there is a big risk of track coalescence in the ordinary JPDA filter.
Example output from the JPDA filter without and with resolution model incorporation can
be found in Fig. 1. As seen in the figures, the tracks from the JPDA filter with resolution
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model are more separated, due to a better description of the received measurements. The
targets move with a constant speed of Sm/s, and the true separation of the targets is 40m in
the parallel section. The sensor resolution cell is chosen as a square with edge length 40m
in Cartesian coordinates.

For the evaluation of the tracking performance, we use as a first criterion the Mean Optimal
Subpattern Assignment (MOSPA) measure [SVVO08], which is a measure that disregards
target identity and thus only considers the estimation of where there are targets. The
second measure is the Root Mean Square Error (RMSE) of the position error. In Fig. 2
(left), the MOSPA performance, averaged over 500 Monte Carlo runs, is shown for the
JPDA filter with and without resolution model, and for the case of perfect resolution, i.e.,
when the targets are always resolved. The results clearly show that the JPDA filter with
resolution model performs better than the filter without resolution model. The performance
in RMSE sense, averaged over 500 Monte Carlo runs, is shown in Fig. 2 (right). Obviously,
also the RMSE performance is improved when the resolution model is incorporated in the
JPDA filter. The increased RMSE of the JPDA filter in the end of the scenario is due to the
fact that there is a larger probability of track switch for that filter, compared to the filter
with resolution model.
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Figure 1: Typical tracking result for the JPDAF without (left) and with (right) resolution model.

6 Summary and Outlook

We have proposed a sensor resolution model for arbitrary target numbers, which is an ex-
tension of the two-target model by Koch and van Keuk [KvK97]. The resolution model
leads to additional data association possibilities and to a multi-target likelihood function
that takes missed detections due to merged measurements into account. As the filter up-
date, in general, is infeasible, the extensive Gaussian mixture has been approximated by
a JPDA filter. The application to a simple target tracking scenario shows a significantly
improved tracking performance if the sensor resolution model is used. While these first
results are encouraging, more simulations are needed to confirm the practicability of the
presented approach. In particular, the stability against resolution model mismatch needs
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Figure 2: OPSA (left) and RMSE (right) performance of the JPDAF without resolution model (top),
with resolution model (middle) in comparison to the case of perfect sensor resolution (buttom).

to be investigated. Furthermore, the resolution model and the corresponding likelihood
function can also be integrated into more sophisticated tracking filters such as the Multi
Hypothesis Tracker or the Probability Hypothesis Filter.
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