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Abstract: Conceptual business process models such as Event-driven Process Chains
(EPCs) play an important role in the business process management life cycle. The pro-
blem in this context is that most of today’s commercial business process management
tools provide only limited support for quality assurance beyond simple syntax checks.
In this paper we focus on verification of behavioral correctness as one of the major qua-
lity issues for process models. To be more concise, we introduce advanced reduction
rules for EPCs in order to address the requirements of performance and identificati-
on of errors in practice. We present the verification tool xoEPC that implements the
reduction rules. It provides detailed feedback to the modeler where errors are located
in the model, and generates a report on quality issues in a process model collection.
We present the application of xoEPC to the analysis of the SAP reference model to
illustrate the tool.

keywords: Business Process Modeling and ERP Systems, Conceptual Modelling, Eva-
luations of Systems Analysis and Design Modelling Methods and Techniques, Work-
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1 Introduction

Conceptual business process models such as Event-driven Process Chains (EPCs) play an
important role in the business process management life cycle. Since they are often used as
early formalizations of process requirements, they should be subject to quality assurance
in order to avoid costly rework later in the implementation phase [Moo05, Ros06]. The
problem in this context is that most of today’s commercial business process management
tools provide only limited support for quality assurance beyond simple syntax checks.
For process models there is a need to verify behavioral properties like proper completion.
Although EPCs are heavily used in practice, their behavioral semantics have been debated
for a while (see [Kin06, MA07]) and only a weak notion of correctness called relaxed
soundness has been defined [DA04]. Relaxed soundness checks whether there is an option
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to proper completion for each task, but does not consider whether proper completion is
always guaranteed. Therefore, it does not find all control flow errors. From a quality
assurance perspective, there is a need for a comprehensive verification approach for EPCs
building on a strict correctness criterion and a formal specification of EPC behavior.

The need for verification is supported by recent studies showing that errors can be found in
a large number of process models from practice [MVD+08, GL07]. For a company being
involved in business process modeling it is important that behavioral correctness of the
models is not only verified, but that the modeler is also pointed to the part that causes an
error. Furthermore, based on a complete inventory of errors in a business process model
collection, a company is able to revise their modeling guidelines and educate their model-
ers to avoid error-prone patterns in the future. In this paper we address these challenges.
We define a set of advanced reduction rules for EPC business process models that can be
used to verify even large models. These reduction rules have been implemented in a new
verification tool called xoEPC that provides detailed feedback about the causes of errors
by projecting them onto the EPC.

The remainder of this paper is structured as follows. In Section 2 we introduce EPCs and
their behavioral semantics in an informal way. We describe EPC soundness, the correct-
ness criterion that we consider in this work. Section 3 describes a verification approach for
EPCs based on reduction rules. The advantage of reduction is not only the performance,
but also a precise identification of erroneous parts in the EPC. We describe how our verifi-
cation tool xoEPC prioritizes the reduction rules and illustrate it by the help of an example.
In Section 4, we discuss the application of xoEPC for the verification of the SAP Refer-
ence Model, an extensive model collection describing the business processes supported by
the ERP system of SAP AG. Section 5 discusses related work, before Section 6 concludes
the paper and gives an outlook on future research.

2 EPC Behavior and Soundness

The Event-driven Process Chain (EPC) is a business process modeling language for rep-
resenting temporal and logical dependencies of activities in a business process [KNS92].
EPCs offer function type elements to capture activities of a process and event type ele-
ments describing pre- and post-conditions of functions. Furthermore, there are three kinds
of connector types including AND (symbol ∧), OR (symbol ∨), and XOR (symbol ×) for
the definition of complex routing rules. Connectors have either multiple incoming and one
outgoing arc (join connectors) or one incoming and multiple outgoing arcs (split connec-
tors). The informal (or intended) semantics of an EPC can be described as follows. The
AND-split activates all subsequent branches in concurrency. The XOR-split represents a
choice between one of alternative branches. The OR-split triggers one, two or up to all
of multiple branches based on conditions. In both cases of the XOR- and OR-split, the
activation conditions are given in events subsequent to the connector. The AND-join waits
for all incoming branches to complete, then it propagates control to the subsequent EPC
element. The XOR-join merges alternative branches. The OR-join synchronizes all ac-
tive incoming branches. This feature is called non-locality since the state of all transitive
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predecessor nodes has to be considered. In terms of connectors EPCs are quite similar to
BPMN [OMG06] and YAWL [AH05].

Figure 1 shows an EPC model for a loan request process as described in [NR02]. The
start event loan is requested signals the start of the process and the precondition to execute
the record loan request function. After the post-condition request is recorded, the process
continues with the function conduct risk assessment after the XOR-join connector. The
subsequent XOR-split connector indicates a decision. In case of a negative risk assess-
ment, the function check client assessment is performed. The following second XOR-split
marks another decision: in case of a negative client assessment the process ends with
a rejection of the loan request; in case of a positive client assessment, the conduct risk
assessment function is executed a second time under consideration of the positive client
assessment. If the risk assessment is not negative, there is another decision point to dis-
tinguish new clients and existing clients. In case of an existing client, the set up loan
contract function is conducted. After that, the AND-split indicates that two activities have
to be executed: first, the sign loan contract function; and second, the offer further products
subsequent process (represented by a process interface). If the client is new, the analyze
requirements function has to be performed in addition to setting up the loan contract. The
OR-join waits for both functions to be completed if necessary. If the analyze requirements
function will not be executed in the process, it continues with the subprocess immediately.
The offer further products process interface triggers a subsequent process for repeatedly
offering products until the offering process is completed.

There are different structural patterns that lead to errors in business process models. They
can be traced back to a lack of synchronization and to deadlocks. In the first case, there
are too many tokens reaching a connector at the same time, while in the deadlock case
a missing token cannot be provided to propagate. For finding errors, we consider EPC
soundness as a correctness criterion. EPC soundness requires (1) that there is a set of initial
markings such that every start event is included in at least one of these initial markings,
(2) that for every marking, that is reachable from a marking in the set of initial markings,
there exists a final marking that can be reached, and (3) that final markings are the only
markings reachable from a marking in the set of initial markings such that no node can
fire [Men07, p.106]. EPC soundness is more precise than relaxed soundness which is the
only correctness criterion that has been applied to EPCs so far. EPC soundness builds on a
formalization of an EPC as a transition system [MA07], and it can be verified by explicitly
calculating the reachability graph. Yet, this approach suffers from the state-explosion
problem [Val98]. In the following section we use an approach based on reduction and
introduce new powerful reduction rules.

3 EPC Reduction Rules

In the section we consider reduction rules for the verification task. The advantage of
reduction rules is that one can clearly identify the elements that cause a breach of EPC
soundness. As a side effect reduction rules are much more efficient than the calculation
of the reachability graph due to the inherent space explosion problem [Val98]. We take
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Figure 1: EPC for a loan request process [NR02]
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previous work by [DVJVA07] as a starting point for our reduction rule set (Section 3.1) and
extend it with new rules (Section 3.2). In this context, a reduction rule T is a binary relation
that transforms a source EPC1 to a simpler target EPC2 that has less nodes and/or arcs
(cf. [Esp94]). A reduction rule is bound to a condition that defines for which arcs and
nodes it is applicable. For space limitations we refer to [Men07] where we formalize the
construction of the reduced EPC and error cases for several of the rules. Our strategy is
to record errors in the reduction process, eliminate the error structure, and continue with
further reduction rules. This way, we might be able to find further errors in the remaining
model. Since the reduction rules are not complete, we have to further inspect the model
using the reachability graph if it is not reduced to the empty model. For details on the
preservation of syntactical properties and EPC soundness by the rules we refer again to
[Men07].

3.1 EPC Reduction Rules by [DVJVA07]

Figure 2 summarizes the reduction rules of [DVJVA07] in four classes.
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Figure 2: Overview of EPC reduction rules by [DVJVA07]

Trivial Constructs The reduction of trivial constructs allows for eliminating sequential
nodes from EPC which have one input and one output arc. These nodes do not
cause deadlock problems and neither does their removal.

Structured Blocks Structured blocks include a split and a join connector with multiple
arcs from the split to the join. If the type of both connectors is equivalent, the rule
matches the structured component rule by [DVJVA07]. In these cases, it is safe to
fuse the parallel arcs. Still, there are four error cases: if the split is an XOR or an
OR and the join is an AND, and if the split is an AND or an OR and the join an
XOR. In these cases, we record the error and continue searching for further errors
in the reduced model.

Structured Loops Structured loops include a join as an entry to the loop and a split as
exit, with one arc from the join to the split, and one in the opposite direction. If
the type of both connectors is XOR, the rule is similar to the XOR-loop rule by
[DVJVA07]. In these cases, it is safe to delete the back arc. Still, there are error
cases: if the entry is not an XOR, the loop cannot be entered because the entry-join
deadlocks. Furthermore, if the exit is not an XOR, the continuously produces tokens

133



on the same out arc with a lack of synchronization. In both cases, the EPC is not
sound and an error is recorded before applying the reduction rule.

Connector Merge Consecutive connectors of the same type and the same cardinality
(split or join) can be merged. Figure 2 depicts the join-connector case.

3.2 Advanced Reduction Rules

Figure 2 summarizes the advanced reduction rules that we introduce in this paper. For a
formalization of each rule, refer to [Men07].
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Figure 3: Overview of advanced EPC reduction rules

Start and End Components There are three different types of start and end components:
structured ones, unstructured ones out of acyclic control flow, and unstructured ones
out of cyclic control flow.

• A structured start component contains two start events and one join connector,
while a structured end component has one split connector and two end events.
In both cases, the second event and the respective arc can be eliminated without
affecting the overall soundness.

• Unstructured start and end components model jumps into and out of an acyclic
control structure. AND-splits to end events can be eliminated since they cannot
cause any errors. (X)OR-splits to end events before AND-joins can result in a
deadlock, and it is by no means guaranteed that this deadlock can be avoided.
Therefore, we record an error and eliminate the end-event branch responsible
for the error.

• Unstructured start and end components on a loop require some specific con-
cepts. The idea here is to consider consecutive pairs of connectors from starts
into a loop and pointing out of the loop to ends. The first case causes an error
if the connectors are AND-splits or OR-splits, because a repetition of the loop
can cause multiple tokens on this loop exit. In the second case an error is re-
ported if the connector is an AND-entry into the loop. A repetition of the loop
would require further tokens on the same entry which cannot be provided.

Delta Components A delta component contains one input arc to a first split, which is
followed by another split and a join in the postset. Furthermore, the preset of the
join connector only includes the two splits. There are two output arcs from a delta
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component: one from the second split and one from the join. Essentially, there are
33 versions of delta components for each combination of three connector labels.
Each of them belongs to one of three types: split-one reducible, split-two reducible,
and non-reducible.

• The split-one reducible deltas can be reduced by deleting the arc between the
first split and the join without losing a combination of tokens on the two output
arcs. Deltas with both splits being the same connector type and the first being
an XOR and the second an OR belong to this group. There are potential dead-
lock cases when the first split is an (X)OR and the join an AND, and when the
first split is an AND or OR and the join an XOR.

• The split-two reducible deltas can be reduced by deleting the arc between the
second split and the join without losing a combination of tokens on the two
output arcs. This rule is applicable for OR-split as first split and XOR-split as
a second. There is an error if the join is not an OR.

• The non-reducible are the rest group, i.e. XOR-split followed by AND-split,
AND-split followed by non-AND-split, and OR-split followed by AND-split.
There are errors with XOR-split, AND-split, and AND-join; AND-split and
XOR-join; AND-split, non-AND-split, and AND-join; and OR-split and non-
OR-join.

Prism Components A prism component extends a delta component with an additional
connector that joins the two output arcs. If this fourth connector is an OR, the arc
between the second split and the first join can be deleted without error. As a result
the whole prism is collapsed by the trivial construct rule afterwards. If the last join
is not an OR, an error is recorded.

Homogeneous In some cases, the EPC is trivially correct, for example, if there are only
XOR connectors in the model. This rule marks the desirable last reduction step.

3.3 xoEPC: An Implementation of Reduction Rules

We have implemented the reduction rules of Sections 3.1 and 3.2 as a verification tool
called xoEPC. This tool prioritizes the rules depending on how easy they can be applied
and according to how much information about errors is lost. Accordingly, the trivial con-
struct rule is tried first, and the merge rule last. This is because after a connector merge it
is not directly clear whether a detected error is caused by one or the other connector that
were merged.

Figure 4 illustrates how xoEPC works on the Loan Request EPC from [NR02]. Deleting
the trivial constructs yields the EPC that is shown in (b). It consists of eight connectors,
one start event, two end events, and an end process interface. Applying the unstructured
end component reduction with the AND-split and the trivial construct reduction results in
the EPC depicted in (c). On the right-hand side, there is a delta component that cannot
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be reduced, but which, together with the OR-join as a fourth connector, yields a well-
behaving prism component. The prism component reduction then results in the EPC given
in (d). Since there are only XOR-connectors left, the Homogeneous Reduction can be
applied to reduce the EPC to the trivial EPC.

4 Application to the SAP Reference Model

In order to test the performance of xoEPC, we turn to the SAP Reference Model [KT98].
This extensive model collection includes almost 10,000 individual models and describes
the business processes supported by the ERP system of SAP AG. 604 of them are EPCs
that have at least one event and one function and 600 of them are interpretable, i.e. they do
not include functions and events with more that one input or output arc. On the following
pages, we discuss the reduction performance from four perspectives: (1) Processing time
of reduction, (2) Extent of reduction, (3) Applicability of reduction rules, and (4) Number
of errors found. We rely on information that is recorded in the errorresults.xml file during
the reduction.

Processing Time of Reduction The processing of the whole SAP Reference Model took
about 18 minutes on a desktop computer with a 3.2 GHz processor. Figure 5 shows how
the processing time is distributed over different models. Each EPC model is represented
by a number on the horizontal axis ordered by the processing time, i.e. the EPC that was
processed the fastest is on the very left position, and the most time-consuming EPC is
found on the very right-hand side of the spectrum. Each EPC is assigned its processing
time as the ordinate. Please note that the ordinate is given in a logarithmic scale. In Fig-
ure 5, it can be seen that about 320 models are processed in less that 1,000 milliseconds,
i.e. one second. Furthermore, we see that only a few (16 EPCs) take more than 10 seconds.
It is interesting to note that the 13 largest models with more than 80 nodes are also the 13
models that require the most processing time. The number of nodes and the processing
time are correlated with a Pearson’s coefficient of correlation of 0.592, showing that the
performance very much depends on the size of the EPC. The maximum processing time
was two minutes and 22 seconds for an EPC with 111 nodes, 136 arcs, and 32 connec-
tors. The performance of the analysis is much better than the performance of the relaxed
soundness analysis reported in [MVD+08], which took about seven hours and 45 minutes
on the same computer, in contrast to less than 30 minutes with reduction rules.

Extent of Reduction All original EPCs together include 12,529 nodes, while the re-
duced EPCs have only 1,118 altogether. The average per model is about 21 nodes before
and 1.85 nodes after the reduction. This means that 91% of the nodes are deleted in the
various reduction steps. Figure 6 shows the EPCs ordered by size of the reduced model
related to the reduced size. Two things can be seen from this figure. 103 of 604 EPCs
could not be reduced completely. Furthermore, these 103 EPCs have less than 29 nodes,
which is a bit more than what is the average for the unreduced models. Only 15 of them
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have more than 15 nodes.

Applicability of Reduction Rules Figure 7 shows how often the eight reduction rules
can be applied for the verification for the SAP Reference Model. Not surprisingly, the
reduction of trivial constructs is used most often (about 6,600 times). It is followed by the
start and end component reduction with about 2,400 applications. This is a good result,
considering that large sets of start and end events have been a major verification problem in
previous studies [VA06, MVD+08]. The structured block rule is the fourth best on terms
of the frequency of application with 345 reductions. The homogeneous rule is still applied
quite often (460 times), since this rule can only be applied once for an EPC. The remaining
four rules are applied less frequently. They still play an important role for the reduction
approach as a whole. Running the reduction without the structured loop, delta, prism, and
merge rule causes 13 additional models to not be reduced completely, and 53 errors would
be missed. Some of the reduced EPCs yield a specific pattern (see [Men07]). These rest
patterns could be used for designing additional reduction rules in future research.
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Number of Errors found Prior research on the verification of the EPCs of the SAP
Reference Model has shown that there are several formal errors in the models (cf. [ZR96,
DVJVA07, MVD+08]). In [MMN+06], the authors identify a lower bound for the number
of errors of 34 (5.6%) using the relaxed soundness criterion. The reduction based on

138



xoEPC identifies 90 models for which altogether 178 errors were found (see Figure 8).
This is almost three times as many models as in an earlier study which used the relaxed
soundness criterion (see [MMN+06]). Furthermore, there are 103 models that are not
completely reduced, and for 57 of them no error was found in the reduction phase. We
analyzed these models using the reachability graph approach reported in [MA07, Men07].
68 of the 103 unreduced EPCs were not sound, and 36 unsound EPCs were not detected
by the reduction rules. This yields 126 EPCs with errors in total for the SAP Reference
Model.

Comparing the application of a rule to the error cases, as depicted in Figure 8, offers
some first inside on the question why errors are introduced in models. While 44 errors
in structured blocks is often in absolute terms, it is little compared to the 345 times a
structured block was reduced. This is different for structured loops and delta components:
the relation of errors to no-error cases is about 1:2, i.e. 11 to 21 for loops and 21 to 37
for deltas. It seems as if modelers have more problems with these sophisticated building
blocks than with the structured blocks. The start and end components may be regarded as
the extreme opposite, with 102 error cases compared to 2,400 applications. Still, this is the
highest value in absolute terms and points to a problem with using unstructured start and
end events. Surprisingly, the prism is applied six times. Even though it is the reduction
pattern with the most nodes, it causes no errors. One explanation could be that modelers
are aware that non-trivial components are best joined with an OR.

5 Related Work

The research in this paper is motivated by general considerations on quality of conceptual
process modeling. As such it relates to work on quality frameworks by [KSJ06, Moo05,
BRU00] as it captures a specific correctness criterion, i.e., EPC soundness. The contribu-
tion of the paper is related to work on process model verification and reduction rules.

The state explosion problem is one of the motivations for considering reduction rules for
Petri nets. A set of six reduction rules that preserve liveness, safeness, and boundedness
of a Petri net is introduced in [Ber86, Ber87] and summarized in [Mur89, p.553]. Yet,
this set of rules is not complete, i.e., there are live, safe, and bounded Petri nets that
cannot be reduced to the trivial model by these rules. For the Petri net class of free choice
nets, [Esp94] show that there exists a complete reduction kit including rules for fusion
of places and transitions similar to (a) and (b) of [Mur89] and two linear dependency
rules to eliminate nonnegative linearly dependent places and transitions. By showing that
soundness corresponds to liveness and boundedness of the short-circuited net, [Aal97]
makes the reduction kit of [Mur89] applicable to the analysis of workflow nets.

In a different stream of research, [SO00] discuss the applicability of reduction rules for
business process models that are defined in a language called workflow graphs. They
provide a kit including five rules. [LZLC02] show that this reduction kit is not complete
by giving a counter example. They extend the reduction kit to seven rules. In [AHV02] the
authors show that the original reduction kit is not complete and use a different approach
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building on well-known Petri net results. By providing a mapping to Petri nets, they show
that the resulting net is free choice. On the one hand, this makes the complete reduction
kit of [Esp94] applicable. On the other hand, basic Petri net analysis techniques and tools
can be applied and soundness can be checked in polynomial time.

A set of reduction rules for flat EPCs was first mentioned in [DVJVA07]. The idea is to
eliminate those structures of an EPC that are trivially correct for any semantics formal-
ization. [WVA+06a] discuss reduction rules for Reset nets, a Petri net class that offers
so-called reset arcs which clean tokens from the net. Their reduction kit includes seven
rules mainly inspired by [Mur89, Esp94]. Based on a Reset net formalization [WVA+06b]
define a reduction kit for YAWL. The reduction rules of xoEPC are specifically tailored
for EPCs. In particular, we introduce novel rules to deal with multiple start and end events
as well as the delta and prism component rules. These rules significantly contribute to the
reduction of EPCs beyond the rules presented in the above mentioned papers.

6 Conclusion and Future work

In this paper we presented xoEPC, a tool for verification of EPC business process models
and its application to a process model collection from practice, namely the SAP Reference
Model. The development of xoEPC is motivated by the fact that quality assurance for
process models needs a formal foundation and must provide appropriate information for
the people involved in process modeling. Our tool xoEPC addressed these challenges by
(1) building on a comprehensive formalization of EPC behavior and EPC soundness as
a notion of correctness, (2) by providing detailed feedback about the causes of errors by
projecting them onto the EPC, and (3) by generating an error inventory report that can be
used for identifying a necessity for training or for revision of modeling guidelines. Based
on the EPC soundness criterion it finds 126 error models in the SAP Reference Model
compared to 34 using relaxed soundness.

Currently, our research covers only one single aspect related to the quality of process
models. In future research we aim to broaden our perspective. By utilize xoEPC in the
analysis of other business process model collections from practice we want to study how
information generated by xoEPC can be used to improve the process of process modeling
in the respective organization, which might eventually contribute to establishing process
modeling as an engineering discipline beyond current practice where it is often conducted
as an art.
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