
A Generic Approach for Modeling Test Case Priorities

with Applications for Test Development and Execution

Andreas Hoffmann 1, Axel Rennoch 1,

Ina Schieferdecker 1, Nicole Radziwill 2

1 Fraunhofer FOKUS, Berlin (Germany)

{andreas.hoffmann,axel.rennoch,ina.schieferdecker}@fokus.fraunhofer.de

2 National Radio Astronomy Observatory (NRAO), Charlottesville, Virginia (USA),

nradziwi@nrao.edu

Abstract: This contribution addresses systematic test development methods to

include an algorithm to retrieve a test suite execution control in order to run test

cases with high priority earlier than others. The approach uses a model that allows

both the introduction of user-defined weightings for system features within the test

model and an automatic calculation of the test ordering. Based on an algorithm for

the calculation of test case weights first results from the application of a tool

implementation in pilot projects have been described.

1 Introduction

Software is often designed to be flexible and reconfigurable, so that new and

unanticipated business needs can be quickly and easily accommodated. This added

dimension of complexity presents additional functional and economic constraints on the

quality assurance process. Software adaptation and customization along various

parameter sets requires addressing different customization mechanisms such as options,

selections, values, or recombination of features. But a comprehensive software testing

plan must also adapt to such variability, which requires appropriate weighting and

selection of system and test variants. This is the challenge addressed by the new

algorithms we present.

Typically, system requirements may be changed along system development due to

reduction, extensions, adaptations or other modifications. Hence, it is important to

identify those test cases in the test base that are affected by these changes imposing a

redefinition of the corresponding test models. The new algorithms support test case

priorities based on weights and (feature) potentials (e.g. occurrence, risk, severity

indicators). This enables an overall reduction in the magnitude of testing efforts, while

minimizing resources needed for test execution.

Our algorithms are applicable in different industrial domains. Tool support has been

provided by implementing either new standalone prototype or extending existing well-

established software like the Classification Tree Editor, a freely available tool supporting

the Classification Tree Method, which is a universal mean for category partition of

requirements.

In our paper we summarize the terminology and criteria for test priority techniques

understood from white-box testing. Test development techniques from different

application domains, including telecommunication and automotive, will be introduced

and enhanced in order to consider the determining factors for test priorities (e.g.

mathematical probabilities, empirical factors). We conclude by reporting practical results

from the application in industrial pilot projects, including better coverage of system

requirements and improved early fault detection rates.

2 Related Work

Related work has been found in the white-box testing approaches [4] and [8] that focus

on increasing the fault detection rate at earlier test runs (i.e. “faster” rate). The

algorithms that have been described differ in:

1. the granularity of the coverage,

2. the basic ordering (e.g. numerical coverage, or consideration of test history),

3. the calculation method approach.

Four granularity types have been identified on different coverage levels: Function, block,

decision (branch) and statement level. Since the granularity increases the precision but

also the efforts, a cost-optimal compromise has to be found.

In addition to a simple ordering of tests by their numerical coverage of statements or

functions, the consideration of a fault exposing potential (FEP), the fault index (FI), and

a combination of both (applying FI first and FEP for tests with equal FI) has been

proposed. FEP denotes the ratio (approximation) between the number of mutants (to be

detected by a test) and the total number of mutants and stands for a high test quality. The

FI addresses the history of a test, i.e. how many faults have already been found with that

test in previous execution runs.

Finally, the calculation methods may base on a simple calculation of the test ordering

that consider all test cases and their potential at once (total calculation) or could be

improved due to a stepwise calculation of the next test after removal of the previous,

already executed, test cases (additional calculation), i.e. a reset of the ordering after each

test selection.

Experimental results have been undertaken and report [4] that any selection technique is

better than a random test case execution order. Furthermore, the more advanced methods

(FI with FEP, additional calculation method) provide better results than the simpler ones

(simple coverage, total calculation method). Due to these results, we tend to introduce

the advanced methods in our model, too.

3 Problem description

Finding an optimal test scope for the testing of a complex software system is a very

difficult problem. On the one hand, the growth of system complexity causes a dramatic

increase of the number of test cases. On the other hand, the time and the budget for

testing are limited. To satisfy all of these conditions, the amount of test data has to be

reduced to a reasonable list which can be handled within an estimated budget. The

priority based test modeling approach helps to solve this problem. It is based on the

following points:

1. Analysis of the requirements.

2. Creation the basic system or test model,

3. Derivation the test cases.

4. Reduction/Ordering the test cases by using of weights in the test model.

The goal of the priority based approach is the reduction of the test scope in such way that

all functional requirements are covered within the estimated effort budget for testing.

The selection of test cases is done in a way which allows finding the most critical errors

in the system. Additionally, the test execution is priority based and can be recalculated

after each execution step. The more important test cases are executed first and after the

execution of each test case it is possible to recalculate the prioritization of the rest of test

cases.

4 System and Test Models

The introduction of test case priorities requires a formalized model on the system or test

campaign in order to assign concrete values to the system features to be used for the

calculation of priorities. In this paper we focus on the existence of concrete values and

abstract from the model type, i.e. we assume either a system or test model. In the later

case the test model may be subject of a model-based test generation method. In the

following we shortly introduce the Classification Tree Method (CTM) as an example for

requirement modeling.

CTM is an approach for the systematic design of tests [5]. Only the input and output

domains of the system under test are needed for the analysis. The domain of e.g. each

input parameter (classification) is systematically segmented into separate subsets, called

classes. The test cases are generated by combining classes from different classifications.

Thus, every test case constitutes a unique combination of classes.

There is a freely available tool called CTE XL for editing classification trees based on

CTM [5], [7] and [11]. With CTE XL, the test case table can be built automatically. The

name of the root node can be defined by the user and has only an informal meaning. The

tree nodes are classifications, their child nodes are equivalence classes. The test case

table can be derived if every test case is due to one equivalence class per classification.

At Nokia Siemens Networks the use of the Classification Tree Method has been used

and demonstrated in a modified way. As introduced in previous papers [1] [2] our

approach is based on requirement specification defined by using e.g. flow charts that will

be mapped to classification trees.

The creation of CTE trees is a straightforward procedure. To do so, the flow chart

scenarios need to be mapped to classifications (that represent the behavior junctions) and

classes (i.e. alternative branches) in the tree. Sub-trees can be used for sub-requirement

specifications. The next figure shows the CTE tree of an example feature.

Fig. 1: CTM-based requirement model example.

5 Weights and Potentials

Depending on the selected modeling approach, we see two major possibilities for the

introduction of test selection criteria: the test case (condition) weights and the potential

of dedicated test events.

A test case may be characterized by a sequence or collection of conditions (e.g. a

sequence of nodes within a tree starting from the tree root “top” level to a “low” level

terminating node) representing a test case. In this context tree edges between tree paths

may have specific “weight” values (the sum of all edges from one node to all its lower

level nodes is 100 %). In case of no weight assignment the equal distribution is assumed.

The overall condition weight of a single test is calculated by multiplying all single

weight values corresponding to the test case edges of a single test (system component or

path under test). Weight values may be retrieved from calculations or empirical

observations as e.g. frequency of scenario occurrence or due to other empirical

categories like fault risks, severity etc. the test may discover.

Path
weight
value

0.220.520.2

Weight
25% 75%

30% 70%

Covered node

Covered edge

+ 1

Potential

Fig. 2: Value assignments in classification trees.

In addition to the weights, a system feature (e.g. tree node) may have a potential that

represents its specific importance. From the mathematical definition the potential x

extends the weight by additional input condition. The potential is a mean to increase the

test case weight values of all corresponding tests (e.g. subsequent tree paths).

Furthermore we introduce the qualification “covered” for those elements in the model

which have been already used in a previous test, e.g. that part of the tree has been

involved by an earlier test run and their portion in the tree that is not part of any other

tests will be left in further calculations. The influence of the “covered” tree edge weights

and node potential values has been considered by the algorithm in the following section.

Fig. 3: Value assignments for system ports and components.

Other model approaches may use different model elements, e.g. ports and units. The

understanding of weights as fixed representation of distributions and potentials as

variable values (due to the setting by experts) will be used in all cases. In the

PREEvision model [9] illustrated in Figure 3 stimulated sensors and observed reactors

will been associated by weight values, system components may be attributed by potential

values.

6 Generic Algorithm

Our algorithm for the calculation of test case priorities is based on the sum of weight and

potential values that have been assigned to the conditions and events in a model that

represents the set of test cases in a test campaign. In the following a generic algorithm

has been defined.

Within the first step all weight values of all possible test (conditions) have to be

calculated by multiplying all single weight values that belong to a single test in the

model.

In a second step of the algorithm a factor will be calculated for each test that intends to

reflect the relevance of a test case in addition to its test case weight. The following factor

F identifies the portion of condition of a test case together with a consideration of the

potential values assigned to test in comparison to the total sum of uncovered conditions

and test potentials:

Next step is the multiplication of condition weight values and the factor F of each test

case. The priorities of the test cases are according to the resulting calculated values: the

test case with the highest value has the highest priority, etc..

Obviously the use of potentials is important for the priority of the test cases and may

change the final ordering for the execution. The values may come from some external

sources or are due to subjective experiences. In the latter case it may be difficult to find

the “right” value for the importance of a node potential and any responsible person may

wish to know about the influence of its value assignment before fixing the final decision.

Therefore we like to mention that it is possible to calculate the exact threshold value for

a potential for balancing the priority of a particular test case in relation to any other test

case. The calculation is based on the rule of three with one unknown variable x for a

system feature potential. E.g. if someone wish preference of a test case to become the top

test case the threshold value for its feature potential should be calculated in comparison

to the current top test case of the whole model. The assignment of any potential value

greater than x will change the resulting test case priority order according to this

constraint.

Furthermore special consideration is required in case of combinations of multiple

models, i.e. import of sub-models. Due to the modification of test case weights by the

relevance factor F it is required to normalize the weight values of a sub-model

calculation before they can be used in referring models.

model) in potentials all of (sum model) in features uncovered (all#

 test)of potentials of (sum test)in features (covered # - test)in (features#

+

+
=F

7 Applications

The approach presented in the previous section has been used in different industrial

domains with heterogeneous system and test models. In the following we refer to two

samples: (1) the classification tree method applied in the telecommunication sector and

(2) the newly developed architecture-driven test development approach initially used in

the automotive domain.

7.1 Classification Tree Method

As the CTE modeling approach has been applied by Nokia Siemens Networks in a

project at the systems test division. For that purpose, a section of the service logic for

mobile telephony has been modeled using the classification tree method, yielding 31 test

cases in the first step, as described in section 4. After applying some node weights and

using the algorithm described in section 6, this number has been reduced to the six most

important test cases that still cover all functional requirements.

Test runs using these six test cases have detected two faults in the service

implementation. After execution of the remaining 25 test cases, no further faults have

been found.

Table 1: Application in the telecom domain

 All test cases Reduced # of test cases Difference

of test cases 31 6 25 (80%)

Requirements coverage 100 % 100 % 0

of found faults 2 2 0

Thus, systematically reducing the number of test cases has resulted in a potential

reduction of the testing efforts by more than a factor of five. At the same time, the

coverage of all functional requirements is assured. Encouraged by this experience, Nokia

Siemens Networks is currently introducing the classification tree method on a larger

scale at systems testing. First results from other projects show similar results.

7.2 Architecture-Driven Test Development

The Architecture-driven test development method uses different architectural viewpoint

for system models as introduced in [10]. Initially it has been defined in the context of an

automotive case study while using the PREEvision software. This developed test

derivation method [3] is useful to identify e.g. so-called PER-based tests, which consider

sets of preconditions (P), events (E), and reactions (R). Basic PER validation tests are

derived from the requirements available in the functional view of the system. Further

tests can be derived due the inclusion of e.g. technical architecture information

(specifying the hardware realisation of the SUT). The architecture model of the SUT

(e.g. as illustrated in section 5) is used to assign and calculate the priorities for the

derived test cases.

PER test cases can be described independent from particular notations but need to

contain information related to precondition and event identifier weight values assigned

to system component ports. A minimal test definition may be a text string that includes

port identifier as e.g. “P1-E1-R1-R1.1”. Collected weight and potential values associated

to these tests will be used to calculate the overall test case priority. Similar to the CTE

related tests the algorithm from section 6 will be applied iteratively. A minimal example

assuming an equal distribution for port values could lead to a test case ordering that

follows the number of PER elements represented by the test, i.e.: priority(P1-E1-R1) >

priority(P1-P2-E2-R2) > priority(P1-P2-P3-E3-R3) since more preconditions will

decrease the probability of a test case.

8 Tool support

Tool support is depending on the test development method and involved system and test

models. Existing tools need to be extended or new standalone tool are required.

The weighting algorithm has been integrated into the CTE XL tool introduced in section

4 for the case study reported in section 7.1. This extension to CTE XL is in use at Nokia

Siemens Networks as an internal tool. It is being developed under an agreement between

the CTE XL developers and Nokia Siemens Networks and is not publicly available. The

following is dedicated to the CTE extension but also applicable for other system or test

models.

When creating a model, the tool initially assigns the same weight to all alternative input

conditions of a tree level in such a way that the sum of the weights is 100%, i.e., for n

edges on one level, every edge is assigned a weight of 100%/n. Whenever an edge is

added or removed, the weights are re-balanced to ensure that the sum remains at 100%.

Fig. 4: Sample tool support for test weight input

The user can then adjust the weight of the individual edges by selecting the appropriate

option in the context menu of the desired node. A window opens which allows changing

the weights of all edges leading away from that node. In doing so, the weights of the

other edges on the same tree level are changed proportionally to their former weight in

order to keep the sum at 100%.

This makes it difficult to set a certain weight configuration when there are more than two

edges on a level. For example, imagine a tree level with three edges A, B and C. When a

user successively adjusts the weights of edge A and of edge B, the previously assigned

weight of edge A is changed. Therefore, it is possible to declare the weights of certain

edges as fixed. However, the weight of at least one edge on each tree level must remain

dynamically assignable. In the example, the user would declare the weight of edge A as

fixed. When changing the weight of edge B, only edge C’s weight would be

automatically adjusted, preserving the weight of edge A.

Fig. 5: Adjusting edge weights

Additionally, it is possible to assign a fixed potential to each node, allowing the user to

designate particularly important or unimportant test cases. Since there are no constraints

concerning these potentials, they can be directly changed by the user. The initial

potential is set to zero for all nodes.

After the test cases are generated, they can be sorted according to the resulting priority.

The most important test cases are shown at the top of the list so they can be created and

executed first. Moreover, the smallest subset of test cases covering all functional

requirements can be determined automatically. This way, the minimum number of test

cases required for testing all requirements covered by the modeled feature can be quickly

determined.

An additional feature of the CTE XL extension is the dynamic reordering of test cases

after the execution of a test case. This makes sense because after a test case has been

executed, the nodes it covers have been tested. These nodes represent decisions in the

service logic and, possibly, functional requirements. Therefore, it is more promising to

execute a test case which covers different nodes next, since it is more likely that other

faults are found by test cases which cover different aspects of the service logic. Since the

preparation of test cases as well as the fixing of faults can take considerable amounts of

time, it is worthwhile to try to find faults at the earliest possible chance.

This goal is achieved by marking a test case as executed in the model. The edges

associated to this test case are then marked as covered, which reduces their weight by a

configurable amount. This can result in a change of the order in which the test cases

should be executed, depending on the concrete model and its weights and potentials. In

order to keep track of the test cases that are marked as executed, they are labeled as such

and they remain at a fixed position inside the test case list when the list is reordered due

to the weight changes.

9 Conclusions

In our approach that is applicable on models like classification trees or system

architecture we have introduced the terminology, method and algorithm to introduce

weight and potential values for the prioritization of test cases. The approach allows

finding an order for test case execution and first results using an extended

implementation of e.g. the classification tree editor CTE XL have shown that most

important test cases lead to an early discovering of faults in the main modules.

As a consequent we request an indication of weight/relevance information as part of

requirement specification as well as a documentation (fault index) of experiences from

earlier test runs to have a means to identify critical parts in the classification tree (i.e.

critical modules of the system under test) with higher weight values and therefore greater

priority.

Our future work will address the impact of algorithm known e.g. from Google PageRank

and further experiments from simulations.

References

[1] S. Alekseev et al.: Systematic Approach for using the Classification Tree Method for Testing
Complex Software-Systems. In Proceeding of the IASTED Conference on Software Engineering,
Innsbruck, Austria, February 2007.

[2] S. Alekseev et al.: Reuse of Classification Tree Models for Complex Software Projects.
CONQUEST 2007, Potsdam, Germany, September 2007.

[3] G. Din, K.-D. Engel: An Approach for Test Derivation from System Architecture Models
applied to Embedded Systems. MoTiP’09 June. 2009, Enschede (NL).

[4] M. Grindal et al.: An evaluation of combination strategies for test case selection. In: Springer
Science + Business Media, LLC 2006.

[5] M. Grochtmann, J. Wegener: Graph Theory in the Control Flow Analysis of the large time
critical Aplications. In Proceedings of the 8th International Software Quality Week, San Francisco,
USA, May 1995.

[6] A. Hoffmann et al.: Application of the Classification Tree Method for Test Modeling in
Complex Software Projects, 4th World Congress for Software Quality (4WCSQ), Bethesda,
Maryland (USA), September 2008.

[7] E. Lehmann, J. Wegener: Test Case Design by Means of the CTE XL. In Proceedings of the
8th European International Conference on Software Testing, Analysis & Review, Kopenhagen,
Denmark, EuroSTAR 2000, December 2000.

[8] J-M. Kim, A. Porter: A History-Based Test Prioritization Technique for Regression Testing in
Resource Constrained Environments. ICSE'02, May 19-25, 2002, Orlando, Florida, USA.

[9] PREEvision: Aquintos software tool. http://www.aquintos.eu/?getlang=en.

[10] T. Ringler et al.: An Approach to Tool-based Design of Electrics/Electronics Architectures.
In: ATZe worldwide Edition: 2008-01.

[11] J. Wegener et al..: Tool-Supported Test Case Design for Black Box Testing by Means of the
Classification- Tree Editor. In Proceedings of the 1st European Interna-tional Conference on
Software Testing Analysis & Review, London, Great Britain, pages 169 – 176. EuroSTAR, 1993.

