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Abstract 

In the cognitivistic paradigm, intelligence was viewed as 
algorithmic, an approach that has lead to many impressive results 
and applications. However, this view turned out to be too limited: 
If we are to understand natural forms of intelligence, embodiment 
must be taken into account. In this paper we explore the 
implications of embodiment by providing a number of case 
studies. One concept that we will investigate is “ecological 
balance”, i.e. the interplay of morphology, materials, and neural 
processing. We develop a method of how this can be 
systematically investigated using artificial evolution and 
morphogenesis. 

 

1. Introduction 

 
The field of artificial intelligence has essentially two goals, understanding natural forms 
of intelligence and developing intelligent artifacts. For several decades, i.e. from the 50s 
until the mid-80s artificial intelligence was mostly concerned with algorithms, for 
example for playing chess, checkers (and other games), solving cryptarithmetic puzzles, 
logical inference, proof of mathematical theorems or natural language processing of 
written text. Viewing intelligent behavior at the level of algorithms is also called the 
cognitivistic paradigm. As is well-known, this approach has been highly successful: the 
victory of the chess playing computer “Deep Blue” over the world champion Garry 
Kasparov in 1997 in New York, is convincing testimony. Moreover, algorithms from the 
field of artificial intelligence have silently crept into many everyday applications: 
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whenever you turn on a computer or an appliance of sorts, there will be some pertinent 
algorithms involved. This includes search engines on the internet, text processing 
programs, speech-based directory information systems, sound systems, dishwashers, cars 
with their fuel injection systems, vacuum cleaners, and elevator control systems. 
While successful in many ways, the approach has failed to contribute significantly to our 
understanding of natural forms of intelligence. Apparently, the latter differ in 
fundamental ways from the algorithmic kind. Over time, it became clear that 
intelligence was not so much a question of algorithms but of the interaction of an agent 
with the real world and the attention turned to embodiment (e.g. Brooks, 1991a, b). As a 
consequence, researchers started using robots as their workhorse. This change in 
orientation entails many new research issues that go beyond the level of algorithms.  

Initially somewhat separate from artificial intelligence, the field of adaptive behavior has 
been growing rapidly during the last decade. Rather than trying to reproduce high-level 
cognition (thinking, reasoning, and abstract problem solving) directly, the focus is now 
on processes of adaptation and learning in the real world. This change in focus has lead 
to an interest in relatively simple biological types of intelligence. The argument was that 
if we are ever to understand higher levels of intelligence, for example, related to human 
natural language, we must first understand simple behaviors, as they are the precursors 
in evolutionary history. Adaptive behavior has attracted many researchers from artificial 
intelligence – the two disciplines are beginning to merge (this holds only for the 
biologically motivated branch of artificial intelligence, not the algorithmic one). 

In this paper we investigate some of the consequences of the embodied approach to the 
study of intelligence. One of the important implications is that not only the neural 
system, but the entire agent, its morphology, and the materials from which it is 
constructed, are responsible for the agent’s adaptive behavior. The relation between 
these aspects of an agent is called “ecological balance.” In fact, the concept of  
“ecological balance” includes two different but related ideas. The first concerns the 
interplay of the sensory system, the motor system, and the neural substrate, the second 
the relation between morphology, materials, and control. In this paper we only deal with 
the second aspect (for references to both ideas, see, e.g. Hara and Pfeifer, 2000; Pfeifer, 
1996; Pfeifer, 1999, 2000; Pfeifer and Scheier, 1999). 

We proceed as follows. First, we introduce the notion of embodiment using a number of 
illustrations. We then discuss the notion of “ecological balance”. This is followed by an 
argument of how this relation can be explored using artificial evolution and 
morphogenesis. Finally, we conclude with a discussion of what has been achieved and 
what the future prospects might be. 

2. Embodiment – the interdependence of morphology and control 

The goal of this section is to introduce the novel ideas that have been developed within 
the framework of embodied artificial intelligence. In particular we will show that 
embodiment means much more than simply “using a robot” or “having a body” – it 
requires an entirely new way of thinking, and it necessitates reflecting on the interaction 
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with the real world; the latter is messy and not as neat as the world of the virtual 
machine. We start with a few comments on embodiment and then present a series of case 
studies. 

2.1 Implications of embodiment 

Embodiment has two main types of implications, physical and information theoretic. 
The former are concerned with physical forces, inertia, friction, vibrations, and energy 
dissipation, i.e. anything concerned with the (physical) dynamics of the system, the latter 
with the relation between sensory signals, motor control, and neural substrate. Rather 
than focusing on the neural substrate only, the attention is now on the complete 
organism which includes morphology (shape, distribution and physical characteristics of 
sensors and actuators, limbs, etc.) and materials. Clearly, the neural processing required 
for a particular task depends on embodiment since the latter delivers, so to speak, the 
raw material, the signals for the neural system to process. Similarly, the motor system 
has a particular dynamics that depends on morphology (body shape, limbs) and 
materials (e.g. of the muscle-tendon system) and this dynamics needs to be controlled or 
modulated by the neural system. And last but not least, through the interaction with the 
real world, the agent actively generates sensory stimulation which is why we often talk 
about sensory-motor coupling. Note that there is no one-way path from sensors to 
internal representations.  

One of the surprising consequences is that often, problems that seem very hard if viewed 
from a purely computational perspective, turn out to be easy if the embodiment and the 
interaction with the environment are appropriately taken into account. For example, as 
we will show in a number of examples, given a particular task environment, if the 
morphology is right, the amount of neural processing required may be significantly 
reduced. Because of this perspective on embodiment, entirely new issues are raised and 
need to be taken into account. An important one “ecological balance” which we 
introduced earlier and that we will further investigate below. 

Before we look at the case studies, let us review an example that demonstrates the 
central role of embodiment in behavior. Simon (1969) has used the metaphor of an ant 
to illustrate some basic principles of behavior. For instance, even though the trajectory of 
an ant on the beach might look complex to an observer, the rules - implemented in the 
neural substrate of the ant - might be very simple, something like: obstacle on right, turn 
left, obstacle on left, turn right. Given a beach where we find pebbles, twigs, rocks, and 
puddles, the trajectory of the ant will be a zigzag line. Let us now make a thought 
experiment. Let us increase the size of the ant by a factor of 1000 (even though this is 
biologically not plausible) and we let the ant loose in exactly the same location, on the 
same beach with the same behavioral rules, i.e. the same “neural substrate”. What 
happens is that the trajectory of the ant will be much more straight than the one of the 
small ant. We left the neural “program” and the environment unchanged, we only 
modified the size - the morphology - and the behavior turned out to be completely 
different. This illustrates on the one hand that behavior cannot be reduced to internal 
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mechanism only, and on the other that in order to understand the behavior of the ant, we 
must know the characteristics of the body into which the brain is embedded and the 
properties of the environment. 

2.2 Case studies illustrating embodiment 

In previous papers we have investigated in detail the effect of changing sensor 
morphology (e.g. Lichtensteiger and Eggenberger, 1999; Maris and te Boekhorst, 1996; 
Pfeifer, 2000; Pfeifer and Scheier, 1999). In this paper we focus on the motor system and 
present mainly case studies on walking robots. 

The passive dynamic walker 

Let us start with an example illustrating the relation between morphology, materials, and 
control. The passive dynamic walker which goes back to McGeer (1990a, b), illustrated 
in figure 1a, is a robot (or, if you like, a mechanical device) capable of walking down an 
incline without any actuation and without control. In other words, there are no motors 
and there is no microprocessor on the robot; it is brainless, so to speak. In order to 
achieve this task the passive dynamics of the robot, its body and its limbs, must be 
exploited. This kind of walking is very energy efficient and there is an intrinsic 
naturalness to it. However, its “ecological niche” (i.e. the environment in which the 
robot is capable of operating) is extremely narrow: it only consists of inclines of certain 
angles. Energy-efficiency is achieved because in this approach the robot is – loosely 
speaking – operated near one of its Eigenfrequencies. To make this work, a lot of 
attention was devoted to morphology and materials. For example, the robot is equipped 
with wide feet of a particular shape to guide lateral motion, soft heels to reduce 
instability at heel strike, counter-swinging arms to negate yaw induced by leg swinging, 
and lateral-swinging arms to stabilize side-to-side lean (Collins et al., 2001).  

 

 
 

Figure 1: Two approaches to robot building. (a) The passive dynamic walker by Steve Collins  
(Collins et al., 2001) , (b) the Honda robot. 
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A different approach has been taken by the Honda design team. There the goal was to 
have a robot that could perform a large number of movements. The methodology was to 
record human movements and then to reproduce them on the robot which leads to a 
relatively natural behavior of the robot. On the other hand control – or the neural 
processing, if you like – is extremely complex and there is no exploitation of the 
intrinsic dynamics as in the case of the passive dynamic walker. The implication is also 
that the movement is not energy efficient. It should be noted that even if the agent is of 
high complexity as the Honda robot, there is nothing in principle that prevents the 
exploitation of its passive dynamics. In human walking, for example, the forward swing 
of the leg is largely passive as well. Of course, the Honda robot can do many things like 
walking up and down the stairs, pushing a cart, opening a door, etc., whereas the 
ecological niche of the passive dynamic walker is confined to inclines of a particular 
angle.  

There are two main conclusions that can be drawn from these examples. First, it is 
important to exploit the dynamics in order to achieve energy-efficient and natural kinds 
of movements. The term “natural” not only applies to biological systems, but artificial 
systems also have their intrinsic natural dynamics. Second, there is a  kind of trade-off 
or balance: the better the exploitation of the dynamics, the simpler the control, the less 
neural processing will be required. 

Muscles – control from materials 

Let us pursue this idea of exploiting the dynamics a little further and show how it can be 
taken into account to design actual robots. Most robot arms available today work with 
rigid materials and electrical motors. Natural arms, by contrast, are built of muscles, 
tendons, ligaments, and bones, materials that are non-rigid to varying degrees. All these 
materials have their own intrinsic properties like mass, stiffness, elasticity, viscosity, 
temporal characteristics, damping, and contraction ratio to mention but a few. These 
properties are all exploited in interesting ways in natural systems. For example, there is 
a natural position for a human arm which is determined by its anatomy and by these 
properties. Grasping an object like a cup with the right hand is normally done with the 
palm facing left, but could also be done – with considerable additional effort – the other 
way around. Assume now that the palm of your right hand is facing right and you let go. 
Your arm will immediately turn back into its natural position. This is not achieved by 
neural control but by the properties of the muscle-tendon system: On the one hand the 
system acts like a spring – the more you stretch it, the more force you have to apply and 
if you let go the spring moves back into its resting position. On the other hand there is 
intrinsic damping. Normally reaching equilibrium position and damping is conceived of 
in terms of electronic (or neural) control, whereas in this case, this is achieved (mostly) 
through the material properties. Or put differently, the morphology (the anatomy), and 
the materials provide physical constraints that make the control problem much easier – 
at least for the standard kinds of movements.  
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These ideas can be transferred to robots. Many researchers have started building 
artificial muscles (for reviews of the various technologies see, e.g., Kornbluh et al., 1998 
and Shahinpoor, 2000) and used them on robots, as illustrated in figure 2. ISAC, a 
“feeding robot”, and the artificial hand by Lee and Shimoyama use pneumatic actuators, 
Cog the series elastic actuators, and the Face Robot shape memory alloys. Facial 
expressions also provide an interesting illustration for the point to be made here. If the 
facial tissue has the right sorts of material properties in terms of elasticity, deformability, 
stiffness, etc., the neural control for the facial expressions becomes much simpler. For 
example, for smiling, although it involves the entire face, the actuation is very simple: 
the “complexity” is added by the tissue properties. Another highly desirable property that 
one gets for free if using the right kinds of artificial muscles is passive compliance: if an 
arm, for example, encounters resistance it will yield elastically rather than pushing 
harder. In the case of the pneumatic actuators this is due to the elastic properties of the 
rubber tubes.  

 
Figure 2: Robots with artificial muscles. The service robot ISAC by Peters (Vanderbilt 

University) driven by McKibben pneumatic actuators. (b) The humanoid robot Cog by Rodney 
Brooks (MIT AI Laboratory), driven by series-elastic actuators. (c) The artificial hand by Lee and 

Shimoyama (University of Tokyo), driven by pneumatic actuators. (d) The “Face Robot” by 
Kobayashi, Hara, and Iida (Science University of Tokyo), driven by shape-memory alloys. 

 

Stumpy – a synthesis 
Recently, there has been an increased interest in applying and further investigating these 
ideas to the construction of robots. An illustrative example is the walking and hopping 
robot Stumpy (Paul et al. 2002) (figure 3). Stumpy’s lower body is made of an inverted 
“T” mounted on wide springy feet. The upper body is an upright “T” connected to the 
lower body by a rotary joint, the “waist” joint, providing one degree of freedom in the 
frontal plane. The horizontal beam on the top is weighted on the ends to increase its 
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moment of inertia. It is connected to the vertical beam by a second rotary joint, 
providing one rotational degree of freedom, in the plane normal to the vertical beam, the 
“shoulder” joint. Stumpy’s vertical axis is made of aluminum, while both its horizontal 
axes and feet are made of oak wood. 

Although Stumpy has no real legs or feet, it can locomote in many interesting ways: it 
can move forward in a straight or curved line, it has different gait patterns, it can move 
sideways, and it can turn on the spot. Interestingly, this can all be achieved by actuating 
only two joints with one degree of freedom. In other words, control is extremely simple – 
the robot is virtually “brainless”. The reason this works is because the dynamics, given 
by its morphology and its materials (elastic, spring-like materials, surface properties of 
the feet), is exploited in clever ways. There is a delicate interplay of momentum exerted 
on the feet by moving the two joints in particular ways (for more detail, see Paul et al., 
2002a, b).  

 

Figure 3: The walking and hopping robot Stumpy. (a) Photograph of the robot. (b) 
Schematic drawing (details, see text). 

Let us briefly summarize the ideas concerning the interplay between morphology, 
materials, and control. First, given a particular task environment, the (physical) 
dynamics of the agent can be exploited which leads not only to a natural behavior of the 
agent, but also to higher energy-efficiency. Second, by exploiting the dynamics of the 
agent, often control can be significantly simplified while maintaining a certain level 
behavioral diversity. And third, materials have intrinsic control properties. 

We have now talked about ants on the beach, simple robots, and artificial muscles. How 
does this all fit together and how does it relate to intelligence? How can we deepen our 
understanding of these relationships, how can they be explored systematically, and how 
could these intuitions be made more quantitative? These are not questions that can be 
answered now; they constitute in fact major challenges. All we can do now is outline 
various approaches. This will be done in the remainder of the paper. 
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3. Exploring “ecological balance” 

So far we have mostly argued that having the right morphology and materials may lead 
to simpler, and cheaper control. Initially, we briefly mentioned the concept of sensory-
motor coupling which implies that an agent, through its interaction with the real world, 
can actively generate and structure its sensory data (e.g. Pfeifer and Scheier, 1997; 
Scheier et al., 1998). This structuring of the sensory data is now facilitated by having a 
proper morphology and proper materials: Because the palm of the hand and the finger 
tips are normally facing inwards there is a high probability that if the right arm, for 
example, moves from right to left, the palm and the finger tips will touch and grasp an 
object. This not only leads to rich haptic sensory stimulation (because of the high density 
of haptic sensors on the finger tips), but will also bring the object into the visual field. 
This way correlations in the sensory data within one channel and between channels can 
be induced (e.g. Lungarella and Pfeifer, 2001; Pfeifer and Scheier, 1997; Pfeifer and 
Scheier, 1999). Inducing correlations of this sort is essential for processes of 
categorization and concept development, as we have argued in detail elsewhere (e.g. 
Pfeifer, in press). These ideas have emerged from related studies that demonstrate the 
embodied nature of categorization and development (e.g. Edelman, 1987; Metta et al., 
1998; Thelen and Smith, 1994). As categorization is one of the most basic cognitive 
abilities on top of which higher-level processes operate, this demonstrates the 
interdependence of embodiment and the development of cognition (For another line of 
argument making a similar point, see Lakoff and Nuñez, 2000). In this paper we focus 
on demonstrating how “ecological balance”, the interplay of morphology, materials, and 
control, can be explored systematically using artificial evolution and morphogenesis. 
 

Understanding and exploring “ecological balance” - artificial evolution and 
morphogenesis  
Using artificial evolution for design has a tradition in the field of evolutionary robotics. 
The standard approach there is to take a particular robot and use a genetic algorithm to 
evolve a control architecture for a particular task. However, if we want to explore 
ecological balance we must include morphology and materials into our evolutionary 
algorithms.  

The problem with including morphology and materials is that the search space which is 
already very large for control architectures only, literally explodes. Moreover, if 
sophisticated shapes and sensors are to be evolved, the length of the genome which is 
required for encoding these shapes will grow very large and there is no hope that 
anything will ever converge.  

This issue can be approached in various ways, we just mention two. The first which we 
will not further discuss is to parameterize the shapes, thus bringing in biases from the 
designer on the types of shapes that are possible. An example that has stirred a lot of 
commotion in the media recently is provided by Hod Lipson and Jordan Pollack’s robots 
that were automatically produced (Lipson and Pollack, 2000). They decided that the 
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morphology would consist of rods to which different types of joints could be attached. 
Rods can, for example, be parameterized as length, diameter, and material constants 
etc., thus limiting the space of possible shapes, or in other words, the types of 
morphologies, dramatically, but then the search space, even though it is still large, 
becomes manageable. While this example is impressive, it still implies a strong designer 
bias. If we want to explore different types of morphologies, we want to introduce as little 
designer bias as possible. This can be done using ideas from biology, i.e. genetic 
regulatory networks.  

The mechanics of artificial genetic regulatory networks  
We provide a non-technical introduction, for details, see, e.g. Bongard and Pfeifer 
(2001; in press). It should be stressed, that although this computational system is 
biologically inspired, it does not constitute a biological model. Rather, it is system in its 
own right. Also, when we use biological terminology, e.g. when we say that 
“concentrations of transcription factors regulate gene expression”, this is meant 
metaphorically. 

The basic idea is the following. A genetic algorithm is extended to include ontogenetic 
development by growing agents from genetic regulatory networks. In the example 
presented here, agents are tested for how far they can push a large block (which is why 
they are called “block pushers”). Figure 4a shows the physically realistic virtual 
environment. The fitness determination is a two-stage process: the agent is first grown 
and then evaluated in its virtual environment. Figure 4b illustrates how an agent grows 
from a single cell into a multicellular organism.  

 

Figure 4: Examples of Bongard’s “block pushers”. An evolved agent in its physically 
realistic virtual environment. (b) growth phase starting from a single cell, showing 
various intermediate stages (last agent after 500 time steps). 
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The algorithm starts with a string of randomly selected floating point numbers between 
0 and 1. A scanning mechanism determines the location of the genes. Each gene consists 
of 6 floating point numbers which are the parameters that evolution can play with. They 
are explained in figure 5. There are transcription factors that only regulate the activity of 
other genes, there are transcription factors for morphology, and for neuronal growth. 
Whenever a gene is “expressed”, it will diffuse a transcription factor into the cell from a 
certain diffusion site. The activity of this genetic regulatory network leads to particular 
concentrations of the transcription factors to which the cell is sensitive: whenever a 
concentration threshold is exceeded, an action is taken. For example, the cell may 
increase or decrease in size, if it gets too large, it will split, the joint angles can be 
varied, neurons can be inserted, connections added or deleted, structures can be 
duplicated, etc. The growth process begins with a single unit into which “transcription 
factors” are injected (which determines the primary body axis). Then it is left to the 
dynamics of the genetic regulatory network. The resulting phenotype is subsequently 
tested in the virtual environment. Over time, agents evolve that are good at pushing the 
block.  

 

Figure 5: The mechanisms underlying the genetic regulatory networks. (a) Genes on the 
genome. Which regions are considered to be genes is determined by an initial scanning 
mechanism (values below 0.1 are taken as starting positions). (b) and (c) An example of 
a particular gene. Nc means “non-coding” region, Pr is a promoter site (start of gene), 

P1 through P6 are the parameters of the gene. P1: the transcription factor (TF) that 
regulates the expression of this gene [0,19]. P2: the TF the gene emits if expressed 

[0,42]. P3: the diffusion site, i.e. the location in the cell from which the TF is diffused. 
P4: the quantity of TF emitted by this gene, if expressed. P5, P6: lower and upper bounds 

of the concentrations within which the gene is expressed. 

 

Emergence – the achievements of artificial evolution and morphogenesis 
Although simple in their basic form, these mechanism lead to an interesting dynamics 
and produce fascinating results. Here are some observations: (1) Organisms early on in 
evolution are typically smaller than those of later generations: evolution discovers that in 
order to push a block of large size, it is necessary to have a large body. In other words, 
evolution had to manipulate morphology in order to achieve the task. (2) Evolution 
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comes up with means of locomotion. In small creatures, these are very local reflex-like 
mechanisms distributed through the entire organism. Larger creatures tend to have 
additional tentacles that can be used to push against the block, which requires a different 
kind of control. (3) There is no direct relation between genotype length and phenotypic 
fitness – the two are largely dissociated. (4) There is functional specialization, i.e. cells 
differentiate into units containing both sensors and actuators (the white colored cells in 
figure 4), cells that only contain sensors but no actuators (gray coloring), and cells not 
containing anything, only providing structural support (black coloring). (5) There is 
repeated structure, i.e. some combination of cells occur in slightly modified form in 
various places on the agent. An example from biology are fingers that are similar but 
differ individually. (6) Some genes specialize to become “master regulatory genes”, i.e. 
they regulate the activity of other genes. Thus, to an outside observer, it looks as if a 
hierarchical structure were evolving in the regulatory network. Note that this hierarchy 
is emergent and results from a “flat” dynamical system. Thus, it can change at a later 
point in time, unlike “structural” hierarchies. Again, metaphorically speaking, artificial 
evolution has discovered how to manage complexity, i.e. by evolving a hierarchical 
organization. It is important to mention that this has all been “discovered” by simulated 
evolution and has not been programmed into the system. Or stated differently, it is 
emergent from the mechanisms of simulated evolution and genetic regulatory networks. 

The work of Eggenberger (1997, 1999) is among the first to employ genetic regulatory 
networks to model growth processes in computational systems. He succeeded in evolving 
three-dimensional shapes. As in the case of Bongard’s system, the resulting shape (or 
organism) is emergent from a complex dynamical system. 

. 

4. Discussion and conclusions 

 
We have argued that the cognitivistic paradigm has not succeeded in explaining natural 
forms of intelligence. The paradigm of embodied intelligence has been proposed instead 
which states that intelligence is emergent from an agent’s interaction with a real 
physical world. We have demonstrated some of the implications of embodiment in 
various case studies. For example, given the right morphology and materials, it is often 
astonishing how simple control can produce sophisticated behaviors. This holds for the 
passive dynamic walker of Steve Collins, and for Stumpy. We have introduced the 
concept of “ecological balance”, which states that given a task environment, there is an 
intimate interaction between morphology, materials, and control, morphology and 
materials taking over some of the control functions. As an example of this we have 
discussed the properties of the muscle tendon system. In order to understand “ecological 
balance” we can study natural systems where evolution has found appropriate 
distributions of tasks among these parts or aspects of an agent. However, it is important 
not only to explore what nature has discovered, but also “life as it could be”, to use Chris 
Langton’s phrase.  
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By building systems that differ in some respects from the natural ones we can learn 
about the natural systems, but we can also acquire an understanding of behavior in 
general, beyond the natural system. This approach has been called the synthetic 
methodology (e.g. Braitenberg, 1984; Pfeifer and Scheier, 1999; Reeke et al., 1989), 
“understanding by building.” In applying this methodology we are using particular 
technologies, robots or simulations, which necessarily differ from their natural 
counterparts.  

As an instrument that can be used to explore the relation or “task distribution” between 
morphology, materials and control in general, not constrained to biological systems, we 
have proposed artificial evolution and morphogenesis and have shown how this system 
which enables the simultaneous evolution of morphology and neural substrate, comes up 
with highly interesting solutions that may or may not be found in natural systems. 
Hopefully, this will eventually lead to an improved understanding of this “task 
distribution” and of embodiment in general. 
 
There are a number of limitations of this approach that we will put on the research 
agenda for the coming years. One is the incorporation of interaction with the 
environment during ontogenetic development. Moreover, the “rewrite rules” for 
neuronal growth will be replaced by more biological mechanisms. Third, instead of 
defining a fitness function, we will turn to “open-ended evolution” where the survival of 
the individual is the sole criterion. This requires the definition of pertinent resources that 
need to be maintained. Fourth, we need to incorporate the variation of material 
properties into the evolutionary algorithm, so that this aspect can be studied as well. And 
last but not least, we need to be able to increase the complexity of our task environments 
which requires much higher computational power. 

At the moment we are confined to simulation; the experiments with artificial systems 
that can grow physically are only in their very initial stages. One way to get around this 
problem, at least to some extent, is on the one hand to have a good simulator that models 
the physics of an evolved individual and its interactions with the real world  (e.g. 
gravity, impact, friction), on the other to have rapid robot building kits that enable the 
researchers to quickly build a robot to test some individuals in the real world. But even if 
done in simulation, evolving an organism from scratch is a big challenge as well.  

One of the problems with the examples and ideas presented in this paper is that they are 
mostly qualitative. Clearly, more quantitative statements will be required to make the 
story more compelling. But we do hope that researchers will take up the challenges 
posed by embodiment. 

Let us conclude by coming back to the title of the paper. Of course, we have not 
explained cognition. But rather than simply programming cognitive processes into 
algorithms, we have tried to study complete agents that might eventually show cognitive 
behaviors as emergent phenomena. While one would hardly call the activities of the 
block pusher or Stumpy “cognitive”, we believe that by increasing the complexity of the 
task environments, eventually more complex agents will evolve, agents that will display 
more sophisticated behaviors that we then might want to call cognitive. One hope is, for 

60



example, that as the environments and agents get more complex, involving not only one 
or a few tasks, but perhaps hundreds or thousands, we will begin to see a certain 
centralization of the neural substrate which in the very simple creatures is largely 
distributed through the entire agent. 
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