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ABSTRACT
Many people procrastinate and struggle to prioritize their most
important work. To help their users overcome such problems, gami-
fied productivity tools like Habitica use heuristic point systems that
can be counterproductive. We recently proposed a more principled
way to compute point values that avoids such problems. Although
it was promising in theory, it required large amounts of compu-
tation even for very short to-do lists. Here, we present a scalable
approximate method that makes our principled approach to to-do
list gamification useable in the real world. Our method leverages
artificial intelligence to generate a gamified to-do lists, where each
task is incentivized by a number of points that communicates how
valuable it is in the long-run. What makes our new method more
scalable is that it decomposes the problem of computing long-term
plans for how the user can best achieve their goals into a hierar-
chy of smaller planning problems. We assessed the scalability of
our method by applying it to to-do lists with increasingly larger
numbers of goals, sub-goals, and tasks, and we also increased the
number of nested levels of the goal hierarchy. We found that the
method can enable web and mobile applications to compute excel-
lent point systems for fairly large to-do lists, with up to 576 tasks
spread out over up to 9 different top-level goals. Our method freely
available through an API1. This makes it easy to use our method in
gamified web applications and mobile apps.

KEYWORDS
gamification, productivity tools, prioritization, AI, procrastination

1 INTRODUCTION
Procrastination and prioritization are challenges that many people
face in their daily lives [20] because setting the right priorities and
working diligently requires a lot of mental effort and self-discipline.
These challenges decrease people’s productivity, which is defined
as the amount of value that a person generates by completing a
series of tasks within a fixed amount of time.

According to temporal motivation theory [21], people procrasti-
nate because distant outcomes are less motivating than immediate
outcomes [20]. As a consequence, the motivational pull of highly
1Link to Code
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valued distant outcomes (e.g., completing one’s dissertation) is of-
ten lower than the desire to avoid unpleasant emotions and the
appeal of small immediate pleasures (e.g., the enjoyment of a funny
video). This is problematic when immediate experience of working
on a project is misaligned with its long-term value. Some produc-
tivity apps, such as Habitica, attempt to rectify this problem using
points, badges, and levels. These game elements can be used to pro-
mote specific behaviors by increasing people’s extrinsic motivation
[14, 15]. However, awarding points, levels, and badges in such a way
that people become more productive is tricky [5, 13]. Adding such
game elements does not foster intrinsic motivation per se [14, 15].
Moreover, previous research found that even intuitively reason-
able point systems can inadvertently incentivize counterproductive
behaviors or undermine the users’ motivation [5, 13, 17, 23]. To
address this challenge, we previously applied temporal motivation
theory [21] to develop a principled mathematical framework for
designing point systems that incentivize each task in proportion
to how valuable it is for the user in the long-run [10]. Controlled
online experiments suggested that this approach can help people
overcome procrastination and become more productive [10, 11].
So far, this approach has been limited to artificial scenarios with
short to-do lists because the time it takes to compute the optimal
number of points increases exponentially fast with the number of
tasks in the to-do list. Therefore, the first goal of this paper is to
mitigate this problem so that to-do list gamification can be applied
to real-world to-do lists.

Given that people typically have to juggle many goals at any
given point of time [12], it comes as no surprise that they often
struggle to identify and prioritize what is most important for their
goals and projects in the long run. Instead, they often get distracted
or side-tracked by less important tasks that are more urgent in
the short-run. This can cause important long-term projects to get
derailed and individuals and their managers and organizations to
become frustrated. While existing productivity tools help people
remember their tasks and goals, they rarely help people prioritize
what is most important in the long run. The few systems that do,
put most of the burden of figuring out what should be prioritized on
the user or are only applicable in specific domains [1, 3, 6, 18, 19].
Therefore, the second goal of this paper is to extend the optimal
to-do list gamification approach introduced by [10] so that it can
be used to help people decide which goals to prioritize.

To achieve these goals, we leverage efficient hierarchical plan-
ning algorithms that were developed in artificial intelligence to
make the optimal to-do list gamification method proposed by [10]
scalable. Our approximate method exploits that people’s goals, sub-
goals, and tasks are organized hierarchically (see Figure 1) by using
a 2-level hierarchical decomposition of a discrete time semi-Markov
decision process (SMDP; [7]). Our method supports goal systems
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with many hierarchically nested levels of subgoals. It allows the
user to indicate that some sub-goals or tasks are essential to the
completion of the corresponding superordinate goals, and to assign
different levels of importance to different goals and tasks. Our re-
sults show that the resulting method is much faster than the exact
method, but still very accurate. It can therefore be applied in the
real world.

The plan for this paper is as follows. We first illustrate the idea of
optimal to-do list gamification with an example. We then formalize
the goal of optimal to-do list gamification in the language of arti-
ficial intelligence. We then present the computational method we
developed to solve this problem. Next, we evaluate our method’s
accuracy and scalability on a series of benchmark problems. We
close by discussing the implications of our findings and directions
for future research.

2 AN ILLUSTRATIVE EXAMPLE OF OPTIMAL
TO-DO LIST GAMIFICATION

To explain the idea of optimal to-do list gamification, we now de-
scribe a realistic use case and present the gamified to-do list our
method generates in this example.

The user’s inputs: Imagine the user has three goals: Goal A, Goal
B, and Goal C. Goal A is the most urgent one because it is due in
12 time steps and takes 12 time steps to accomplish. It can only be
completed on time if all its tasks are prioritized first. Goal B has
a more flexible deadline and can be completed even after Goal A
has been completed. Goal C is a goal which has a high value, but it
cannot be completed by its deadline. Each of those goals has two
subgoals, and each subgoal comprises multiple tasks.

In the hierarchical to-do list below, the Value of a goal represents
how valuable it is for the user to achieve it. Its Deadline indicates
how much time the user has to achieve the goal. Each sub-goal
has an Int Reward which denotes how valuable completing the
sub-goal is to the user, independent of the corresponding goal. Ess
is a Boolean value which is True if the sub-goal is deemed essential
to complete the corresponding goal. Additionally, Imp denotes how
important the sub-goal is relative to the other sub-goals. Finally,
Time indicates the estimated time to complete a sub-goal.

Goal A, - Value: 1000, Deadline: 12,

SG A1 - Int Reward: 40, Ess: True,Imp: 100, Time: 7
Task A11 - Int Reward: 10, Ess: True,Imp: 60, Time: 3
Task A12 - Int Reward: 15, Ess: True,Imp: 20, Time: 2
Task A13 - Int Reward: 15, Ess: True,Imp: 20, Time: 2

SG A2 - Int Reward: 30, Ess: True,Imp: 100, Time: 5
Task A21 - Int Reward: 20, Ess: True,Imp: 60, Time: 3
Task A22 - Int Reward: 2, Ess: True,Imp: 30, Time: 1
Task A23 - Int Reward: 8, Ess: True,Imp: 10, Time: 1

Goal B, - Value: 500, Deadline: 50,

SG B1 - Int Reward: 100, Ess: True,Imp: 100, Time: 6
Task B11 - Int Reward: 80, Ess: True,Imp: 90, Time: 4
Task B12 - Int Reward: 20, Ess: True,Imp: 10, Time: 2

SG B2 - Int Reward: 100, Ess: True,Imp: 100, Time: 17
Task B21 - Int Reward: 20, Ess: True,Imp: 20, Time: 2
Task B22 - Int Reward: 10, Ess: True,Imp: 60, Time: 2
Task B23 - Int Reward: 10, Ess: True,Imp: 2, Time: 1
Task B24 - Int Reward: 40, Ess: True,Imp: 15, Time: 10
Task B25 - Int Reward: 20, Ess: True,Imp: 3, Time: 2

Goal C, - Value: 5000, Deadline: 50,

SG C1 - Int Reward: 10, Ess: True,Imp: 100, Time: 3
Task C11 - Int Reward: 5, Ess: True,Imp: 60, Time: 1
Task C12 - Int Reward: 5, Ess: True,Imp: 40, Time: 2

SG C2 - Int Reward: 90, Ess: True,Imp: 100, Time: 502
Task C21 - Int Reward: 50, Ess: True,Imp: 20, Time: 50
Task C22 - Int Reward: 10, Ess: True,Imp: 60, Time: 400
Task C23 - Int Reward: 20, Ess: True,Imp: 10, Time: 50
Task C24 - Int Reward: 10, Ess: True,Imp: 10, Time: 2

The output of our optimal to-do list gamification method: Our
method assign points in such a manner that a person who always
chooses the task with the largest number of points will always do
what is best for them in the long run. In this example, the optimal
sequence of tasks in the to-do list is to first select all the tasks to
achieve Goal A because it has the highest value (1000) and a tight
deadline. Since all tasks of Goal A are essential, all tasks of Goal A
are first selected. Because completing the first subgoal of Goal A
takes the user closer to achieving Goal A than completing its second
subgoal (7 vs. 5 time steps) and has higher intrinsic value to the
user (Int Reward 40 vs. 30), its tasks (Task A11-A13) are assigned
more points than the tasks of the second subgoal (Task A21-A23).
Task A11 was assigned slightly fewer points than Tasks A12 and
A13 because the user indicated that it has less intrinsic value to
them (Int Reward 10 vs. 15).

Next, the tasks to achieve Goal B were selected. After that, only
the tasks needed to accomplish Goal C remain. At this stage, the
optimal action to perform would be to slack-off. This makes sense
and can be explained by looking into the sub-goals of Goal C. Goal
C consists of 2 essential sub-goals, of which sub-goal SG C2, cannot
be completed before the deadline, hence, performing any tasks of
Goal C would not yield to the completion of Goal C and should not
be completed.

Therefore, before the user has completed any of their tasks, the
output of our method looks like this:
Task A12: 1574.5 Points
Task A13: 1574.5 Points
Task A11: 1574.3 Points
Task A23: 322.8 Points
Task A22: 322.8 Points
Task A21: 322.8 Points
Task B25: 282.8 Points
Task B21: 282.8 Points
Task B23: 282.8 Points
Task B22: 282.8 Points
Task B24: 282.6 Points
Task B11: 94.0 Points
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Task B12: 94.0 Points
Slack off: 10.1 Points
Task C11: 7.0 Points
Task C12: 7.0 Points
Task C24: -399.8 Points
Task C21: -399.9 Points
Task C23: -400.0 Points
Task C22: -402.9 Points

After the user has completed the tasks of Goal A and Goal B on
time, the gamified to-do list generated by our method would look
as follows:

Slack off: 10.1 Points
Task C11: 7.0 Points
Task C12: 7.0 Points
Task C24: -399.8 Points
Task C21: -399.9 Points
Task C23: -400.0 Points
Task C22: -402.9 Points

As you can see, the gamified to-do list generated by our method
now encourages the user to slack off instead of working on the
tasks for Goal C.

3 PROBLEM FORMULATION
The goal of to-do list gamification is to maximize the user’s long-
term productivity by proposing daily to-do lists where each task is
incentivized by a certain number of points. According to temporal
motivation theory [21], we can help people overcome procrastina-
tion by distributing the distant value of the goal over more proximal
and more attainable milestones. Therefore, the goal of optimal gam-
ification is to assign points to tasks and sub-goals in such a way that
people are motivated to complete the tasks that are most valuable
to them in the long run. Regardless of whether the points instill an
expectation of extrinsic or intrinsic value and what the underlying
psychological mechanisms might be, we assume that the points
people anticipate for their immediate next task are more motivating
to them than the prospect of receiving points for other tasks later.

Users compose hierarchical to-do lists comprised of three types
of items: goals, sub-goals and tasks. We define a task as a sub-goal
that cannot be further decomposed. Simply put, a task is the smallest
non-divisible unit of work.

As described in Section 3.1, we first model the sequences of tasks
that user’s pursuit of their goals as a discrete-time semi-Markov
Decision Process (SMDP) [7]. In brief, a semi-Markov Decision
Process is a mathematical model of the problem of choosing a
sequence of actions (here tasks) that can take different amounts of
time in such a way as to maximize the sum of the subjective utility
attained by completing tasks and achieving (sub)goals (“reward”)
minus the sum of the action’s costs. Please note that we are using
the word “reward” to refer to a content-free technical construct of
the SMDP formalism. We use the reward function of the SMDP as
a placeholder for any positive or negative subjective value of any
external or internal event of any kind. This is not limited to extrinsic
incentives such as money, but also includes the intrinsic enjoyment
that people derive from certain activities. Therefore, our formal
mathematical does not constitute a commitment to behaviorism.

To the contrary, it is fully compatible with cognitive theories of
(intrinsic) motivation [see 16].

Solving the SMDP model of a user’s projects generates the op-
timal plan to complete a list of user-specified tasks. Our method
approximates the solution of the large SMDPs by treating each level
of the hierarchical to-do list as a mini-SMDP. Each mini-SMDP
consists of 1 goal and multiple sub-goals. In each mini-SMDP, the
sub-goal is treated as a task, and as such, will be referred to as a
task from now on. We define a root of a to-do list as an imaginary
goal, whose sub-goals are the user’s top-level goals (see Figure 1).
Goals consist of a deadline, a value estimate, and a list of sub-goals.
Each sub-goal contains an estimate of how long it will take to
complete it, a Boolean value to indicate if the sub-goal is essential
to complete its corresponding goal, its importance for achieving
the corresponding goal, and the intrinsic value of achieving the
subgoal above and beyond its instrumental value for achieving the
larger goal. A sub-goal is deemed as essential if the completion of
the sub-goal is necessary for the completion of the goal. In other
words, a goal cannot be completed without completing all of its
essential sub-goals. As such, an essential sub-goal is marked with
a high importance factor, and a non-essential sub-goal should be
marked with a low importance factor. The intrinsic value of a task
or subgoal is an optional parameter the user can specify to com-
municate to which extent they value completing a task or subgoal
for its own sake. For instance, a student with the goal to get an A
could use this parameter to express how much they value learning
about a certain topic for its own sake, while leaving it blank for
topics that they only care about to the extent that studying them
improves their grade.

In addition, users specify their desired workload in hours for a
typical day (typical day’s working hours) and for the day at hand
(today’s working hours). The outputted gamified daily schedule
should contain all tasks that users indicated they wanted to work
on today, as well as additional tasks towards their goals, up to the
desired daily workload.

3.1 Modelling the to-do-list as a discrete-time
SMDP

Formally, an SMDP is defined by a set of states, a set of actions,
a transition time function, a transition dynamics function, and a
reward function. We will now define each of these components of
our model in turn.

The state space S consists of all possible combinations of com-
pleted and uncompleted tasks. Since a task can either be completed
or uncompleted, each 𝑠 ∈ S is a binary vector of length 𝑛+1, where
𝑛 corresponds to the total number of tasks in the SMDP and the
slack-off task. The slack-off task represents when an user decides
to no longer do any more productive work. If the 𝑖-th element of
any binary vector 𝑠 ∈ S is 1, the task associated with the element
is completed, and 0 otherwise. Similarly, the action space A refers
to the selection of a task and hence 𝑎 ∈ A is of the same size, 𝑛 + 1.

S = {{0, 1}𝑛+1} (1)
Considering𝐺 top-most goals, each goal having𝐷 sub-goal levels

and each sub-goal having 𝐵 sub-sub goals, the to-do list would
have a total of 𝐺 · 𝐵𝐷 tasks. Without breaking the to-do list into



MuC’22, 04.-07. September 2022, Darmstadt Consul et al.

Root

Goal A Goal B

SG A1 SG A2 SG B1 SG B2

Task A11 Task A12 Task A13 Task A21 Task A22 Task A23 Task B11 Task B12 Task B13 Task B21 Task B22 Task B23

Figure 1: Graphical example of a hierarchical to-do-list.

multiple mini-SMDPs, the state space would be of size 2(𝐺 ·𝐵𝐷+1) .
By breaking down into mini-SMDPs, we would need to solve 𝐺 · 𝐷
SMDPs with a state space 2𝐵+1. Hence, the decomposition of the
to-do list into mini-SMDPs shrink the size of the state space and the
number of computations go down from 2(G·BD+1) to B · D · 2B+1.

3.1.1 Transition time 𝐹 . In a SMDP setting, the transition-time
function, 𝐹 (𝜏 |𝑠𝑡 , 𝑎) is the probability that the time at which the
agent has to make the next decision occurs in exactly 𝜏 time units, as
a consequence of executing action 𝑎 in state 𝑠 at the time 𝑡 . We chose
a transition-time function that can model the cognitive bias known
as the planning fallacy, in which people underestimate the time
required to complete a task. Kahneman and Tversky [8] describe
this bias as such: “Scientists and writers, for example, are notoriously
prone to underestimate the time required to complete a project, even
when they have considerable experience of past failures to live up to
planned schedules... It frequently occurs even when underestimation
of duration or cost is actually penalized.”

Since the SMDPs are modelled with discrete time steps and
people have unreliable time estimates, we model the number of
time units required for action completion to follow a zero-truncated
Poisson probability distribution2 with adjusted mean value and
variance. We formally define the transition-time function as

𝐹 (𝜏 |𝑠𝑡 , 𝑎) := Poisson>0 (𝜏 ; 𝑘̃) =
𝑘̃𝜏𝑒−𝑘̃

𝜏 !(1 − 𝑒−𝑘̃ )
where 𝑘̃ = 𝑐pf · 𝑘 , 𝑘 is the discrete amount of time units required
to complete action 𝑎 in state 𝑠 at the time 𝑡 , and 𝑐pf ∈ R>0 is a
planning-fallacy constant that adjusts the distribution parameter.
In lack of knowledge about the exact value of the planning-fallacy
constant (𝑐pf), we follow King and Wilson [9] and we initially set
its value to 1.39. Obtaining better estimates for this value based on
real-world data is left for future work.

3.1.2 Transition dynamics 𝑇 . The transition dynamics from a cur-
rent state 𝑠 at the time 𝑡 to a next state 𝑠 ′ after executing an action
𝑎 is deterministic in completion, but stochastic in duration. In other
words, the presented algorithm assumes that users will complete
a task once they start, but may require more time than the time
estimated for completion of the task. Formally, if an action 𝑎 is
represented by the 𝑖-th bit of the binary state vector 𝑠 , the binary
2Also known as conditional Poisson distribution, positive Poisson distribution.

vector of the next state 𝑠 ′ can be written as 𝑠 ′ = 𝑒𝑖 ∨ 𝑠 , where 𝑒𝑖 is
a one-hot vector with a value of 1 only at its 𝑖-th position, and ∨
represents the “or” operation of two binary vectors.

A special case of the transition dynamics occurs after reaching
the terminal state in which all real tasks have been completed or
if the slack-off action is selected. There, the process transits to a
goal-achieving state 𝑠† after instantaneously executing the action
𝑎† in 0 time steps, that is 𝑇 (1, 𝑎†, 𝑠†) = Pr(𝑠† |1, 𝑎†) = 1.

3.1.3 Reward function. We define the reward function 𝑟 (𝑠𝑡 , 𝑎, 𝑠 ′𝑡+𝜏 )
from a current state 𝑠 at time 𝑡 to the next state 𝑠 ′ at time 𝑡 + 𝜏 after
performing action 𝑎 ∈ A that takes 𝜏 time units for execution to be

𝑟 (𝑠𝑡 , 𝑎, 𝑠 ′𝑡+𝜏 ) =


𝑅(𝑎+) · (1 − 𝛾)−1; if the slack off action was chosen
−𝜆 (𝑔) ∑𝜏−1

𝑘=0 𝛾
𝑘

+𝛾𝜏−1 · 𝑟extrinsic (𝑠𝑡 , 𝑎, 𝑠 ′𝑡+𝜏 ) · Π(𝛽𝑔)
+𝑟intrinsic (𝑎); if any other action was chosen

,

(2)

where 𝑟intrinsic represents how much the user intrinsically values
completing the task for its own sake.

The extrinsic component (𝑟 (𝑔)(extrinsic) ) of this reward function is

𝑟
(𝑔)
(extrinsic) (𝑠𝑡 , 𝑎, 𝑠

′
𝑡+𝜏 ) =


𝑅(𝑔) ·

∑
𝐼𝑑𝑜𝑛𝑒 (𝑠′𝑡+𝜏 )∑
𝑎𝑘 ∈A𝑔 𝐼 (𝑎𝑘 ) ; if goal is complete

0; if goal hasn’t been completed
,

(3)
where 𝑎+, represents slack-off action, 𝛾 ∈ (0, 1] is a discount factor,
𝑅(𝑔) indicates the value of a goal 𝑔 ∈ G. 𝜆 (𝑔) ∈ R>0 models the
value that reflects the cost of a person’s time and mental effort to
work on goal 𝑔. 𝐼𝑑𝑜𝑛𝑒 (𝑠 ′𝑡+𝜏 ) refers to the list of importance values
of the subset of completed tasks in state 𝑠 ′𝑡+𝜏 .

𝑅(𝑔) returns the goal value if executing the next task-level action
𝑎 leads to completion of goal 𝑔. We define Π(𝛽𝑔) to be the penalty
function for a goal 𝑔. The value of the penalty function discounts
the goal reward proportionally to the time by which deadlines
associated with that goal are missed, and it can be formally written
as Π(𝛽𝑔) = (1 + 𝛽𝑔)−1. Here 𝛽𝑔 =

∑𝑛
𝑖 𝜓 · Δ𝑡𝑖 is a weighted sum of

penalties for tasks whose deadlines were 𝜓 ∈ R>0 is the penalty
rate (per unit time) and Δ𝑡𝑖 is the number of time units by which
the deadline was missed.
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According to the definition, an immediate negative reward and
a small positive reward is obtained for completing each task. Con-
versely, an immediate positive reward is obtained after the goal is
completed or a slack-off action has been chosen for execution. A
goal is said to be completed if all essential sub-goals are completed.

3.1.4 Optimal policy. As described in Section 4.2, each to-do list is
broken down into mini-SMDPs in a hierarchical manner, treating
each layer as a goal to propagate and compute the value of each
individual task. Once all the 2-layer mini-SMDPs have been solved,
their tasks and the corresponding point values are collated into
a single gamified to-do list. The (approximately) optimal policy
can then be defined as always choosing the task with the largest
number of points from the list of uncompleted tasks.

3.2 Maximizing the productivity of myopic
workers by optimal gamification

The SMDP defined above allows us to formalize a person’s produc-
tivity from time 𝑡1 to time 𝑡2 by

P(𝑠𝑡1 , 𝑠𝑡2 ) =
𝑉★(𝑠𝑡2 ) −𝑉★(𝑠𝑡1 )

𝑡2 − 𝑡1
, (4)

where 𝑠𝑡1 and 𝑠𝑡2 describes the sets of tasks that the person had
completed by time 𝑡1 and time 𝑡2 respectively.

Following [10], we model people as myopic bounded agents who
generally choose tasks based on the difference between their im-
mediate reward minus the subjective cost of working on a task,
which we model as the product of the task’s unpleasantness and its
duration. That is, we assume that people select tasks according to
the greedy policy

𝜋greedy (𝑠) = argmax
𝑎
E

[
𝑟 (𝑠, 𝑎, 𝑠 ′)

]
. (5)

Under this assumption, the problem of maximizing people’s pro-
ductivity by optimal gamification can be formalized as computing
optimal incentives 𝑓 ★(𝑠, 𝑎) so that

∀𝑠 : 𝜋★(𝑠) ∈ argmax
𝑎

{
𝑓 ★(𝑠, 𝑎) +E

[
𝑟 (𝑠, 𝑎, 𝑠 ′)

]}
. (6)

Lieder et al. [10] proved that this can be achieved by setting
𝑓 (𝑠, 𝑎) to the optimal incentives

𝑓 ★(𝑠, 𝑎) = E
[
𝑉★(𝑠 ′) |𝑠, 𝑎

]
−𝑉★(𝑠) (7)

= max
𝑎′

𝑄★(𝑠 ′, 𝑎′) −max
𝑎̃

𝑄★(𝑠, 𝑎) (8)

To help people choose the most valuable task, their daily to-do
list should include the tasks 𝜋★(𝑠𝑡 ), 𝜋★(𝑠𝑡+1), · · · that the optimal
policy would choose on that particular day (where 𝑡 is the first time
step of the person’s work day). Unfortunately, naive computation
of 𝑓 ★ is intractable for real-world applications. The goal of this text
is to present a scalable algorithm for approximate computation of
optimal incentives 𝑓 ★ for real-world applications of productivity
apps.

4 METHOD
An SMDP consists of one goal andmultiple sub-goals. As mentioned
in Section 3, while solving the SMDP, we consider each sub-goal as
a task with no sub-tasks.

4.1 Solving mini-SMDP
Given a mini-SMDP with 𝐵 sub-tasks and starting time as 𝑡 = 𝑡𝑜 ,
the stating state 𝑠𝑡𝑜 is represented as a vector of size 𝐵+1. The mini-
SMDP is computed by first checking the tasks completed, marking
the vector 1 if the corresponding task is completed. The last index
of the vector represents if the slack-off action has been previously
selected, indicating that the state is now in state 𝑠†.

From the starting state, the method computes the expected re-
ward for all the possible sequences of tasks. After initializing the
𝑄-values for a given state and time, it iterates over all the possible
actions in the given state. If the optimal sequence following an
action is not computed before and if the action is not a slack-off
action, the method computes the expected reward for following
the given action and then the optimal policy before updating the
𝑄-value for a given state and the expected reward of doing a task.

The expected reward for completing the task is computed by
iterating over time estimates using the transition function 𝐹 . The
expected task reward is calculated by taking the weighted average
of the reward obtained by completing a task for each time estimate.
It takes into account the penalty of missing the deadline (if missed)
and the discounted cumulative cost for performing the task an the
immediate reward from the reward function 𝑟 (𝑠𝑡 , 𝑎, 𝑠 ′𝑡 ′). Addition-
ally, the reward for following the optimal policy is computed for
each time estimate to also compute the expected total reward used
Used for updating the 𝑄-value.

4.2 Passing of the value function
To understand how the value is propagated down the SMDP, we
utilize an example to-do list shown in Figure 1. It consists of 2 goals,
which having 2 sub-goals. Each sub-goal has 3 tasks. The SMDP is
broken down into 7 mini-SMDPs as shown below:

(1) Goal: Root, Sub-goals: Goal A, Goal B
(2) Goal: Goal A, Sub-goals: SG A1, SG A1
(3) Goal: Goal B, Sub-goals: SG B1, SG B2
(4) Goal: SG A1, Sub-goals: Task A11, A12, A13
(5) Goal: SG A2, Sub-goals: Task A21, A22, A23
(6) Goal: SG B1, Sub-goals: Task B11, B12, B13
(7) Goal: SG B2, Sub-goals: Task B21, B22, B23

A dummy “Root” node is created to facilitate solving of the mini-
SMDP. The root goal value is the sum of values of the goals assigned
by the user and denotes the total number of productivity value in
the to-do list. The importance of each goal is given as the ratio
between the value assigned to the goal and the sum of values of all
goals.

In the 1st mini-SMDP, all goals are represented as tasks and
marked as non-essential. The intrinsic value of a goal is computed
recursively by computing the sum of the intrinsic values of all its
sub-goals.

After solving the 1st mini-SMDP, the value of the sub-goals (Goal
A, Goal B), denoted by 𝑅(𝑆𝐺𝑘 ) will be passed down to the 2nd and
3rd mini-SMDPs as follows

𝑅(𝑆𝐺𝑘 ) =
𝑒𝜂 (𝑆𝐺𝑘 )∑𝑛
𝑖=1 𝑒

𝜂 (𝑆𝐺𝑖 )
·
𝑅(𝑔) +

∑
∀𝑆𝐺𝑖 ∈𝑃 (𝑔)

𝑟intrinsic (𝑆𝐺𝑖 )
 (9)



MuC’22, 04.-07. September 2022, Darmstadt Consul et al.

with
𝜂 (𝑆𝐺𝑘 ) = {𝛾𝜏𝑆𝐺𝑘 · E[𝑉 ∗ (𝑠 ′ |𝑠, 𝑆𝐺𝑘 )] −𝑉 ∗ (𝑠)}

+𝑟extrinsic (𝑠𝑡 , 𝑆𝐺𝑘 , 𝑠
′
𝑡+𝜏𝑆𝐺𝑘

) · Π(𝛽𝑆𝐺𝑘
) + 𝑟intrinsic (𝑠𝑡 , 𝑆𝐺𝑘 , 𝑠

′
𝑡+𝜏𝑆𝐺𝑘

)
(10)

where 𝑅(𝑔) is the return of the optimal policy of the 1𝑠𝑡 mini-SMDP.
𝜏𝑆𝐺𝑘

is the time estimate to complete all essential tasks of the sub-
goal 𝑆𝐺𝑘 .

Similarly, after solving the 2nd mini-SMDP, the value of SG A1
will be passed down to the 4th mini-SMDP and value of SG A2 to
5th mini-SMDP. Likewise, the value of SG B1 and SG B2 will be
passed down to the 6th and 7th mini-SMDP, respectively. The flow
of solving mini-SMDPs is depicted in Figure 2

5 RESULTS
As detailed in the following two subsections, our method is both
highly accurate and highly scalable. For an illustrative example of
the gamified to-do lists that our method produces, see Section 2.
The code for our API is available on Github.

5.1 Accuracy
To evaluate the quality of the point values computed by our method,
we simulate their effect on a user who always selects a task with
the highest number of points in the incentivized to-do list until the
points for the task with the highest points is less than the slack-off
reward. This strategy is called the myopic greedy strategy. We com-
pare the performance of the myopic greedy strategy on to-do lists
incentivized by the points computed by our proposed algorithm
with its performance on the same to-do lists when they are incen-
tivized by the exact point values calculated using Value Iteration
[2]. The performance metric selected is the actual aggregated re-
ward. The actual reward consists of the reward for completing a
task (intrinsic value) and the reward for completing a goal (value
associated with the goal). In case the deadline of a task or goal is
missed, the value associated with the completion of the task or goal
is not included.

We define a loss ratio (lr) metric to compare the performance of
the proposed algorithm with the exact solution as follows:

lr = 100 ·
(𝑅exact − 𝑅algorithm)

𝑅exact
, (11)

where 𝑅exact and 𝑅algorithm are the returns that our model of a
myopic worker achieves when the to-do list is incentivized by the
points computed with the exact method and our new approximate
method, respectively.

We assessed the accuracy of our method’s approximate solution
in 28 hand-crafted case studies. These case studies were designed to
cover realistic use-cases with a typical number of goals and typical
numbers of subgoals per goal and tasks per subgoal (e.g., 3 goals, 2
subgoals per goal, and 3 tasks per subgoal, 18 tasks in total). Ad-
ditional test-cases systematically varied the number of goals and
subgoals. We also included test cases where the number of tasks
and subgoals differed across goals and test cases that systematically
varied the values of the additional parameters that were not avail-
able in the earlier version by [22] (e.g., intrinsic values, importance,
and whether a task is necessary to achieve the goal). The list of

test cases can be found in Appendix A1 of [4]. A loss-ratio of 0
indicates that the performance of the sequence of tasks followed
by using the myopic greedy strategy of the optimal gamified points
computed by our proposed algorithm and the exact solution is the
same. All 28 case studies yielded a loss-ratio of 0 which indicates
that the calculation of the gamified points using our proposal yields
the exact same performance as using the optimal gamified points.

5.2 Scalability
While there is no theoretical limit for the size of the to-do list
for which the proposed algorithm can solve, there is a practical
limit set by the services used to run the API. The API is hosted
on a Heroku server, which has a practical 30 seconds time limit
for the API request to be active. We compared the time required
for solving a to-do list in its initial state with varying number of
goals, maximum depth and the branching factor of the to-do list.
The maximum depth of the to-do list is defined as the lowest level
a task can be abstracted. The branching factor is the number of
sub-goals a goal can be divided into. For example, the maximum
depth of the to-do list illustrated in Figure 1 is 3 with a branching
factor of 3. The tasks generated in the scalability assessment are all
essential, require an estimated time of 1 time unit to be completed,
have an intrinsic value of 1 and have equal importance to other
tasks.

While Figure 3 shows that the time required scales linearly to
the increase in the number of goals, Figure 4 and Figure 5 show that
the time required grows exponentially to the increase in branching
factor and maximum depth.
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0.5 0.97 2.44 7.4 33.12 126.11385.71 N/A N/A N/A

0.31 0.44 1.88 5.66 24.77 108.58314.67 N/A N/A N/A

0.16 0.54 1.49 4.37 21.39 82.26 305.91 N/A N/A N/A

0.07 0.22 1.1 3.88 16.57 61.4 242.71 N/A N/A N/A

0.04 0.16 0.54 3.48 10.38 42.98 176.45 N/A N/A N/A

0.02 0.08 0.45 1.74 7.07 30.07 120.76 N/A N/A N/A

0.02 0.06 0.27 1.46 5.13 18.92 74.26 N/A N/A N/A

0.01 0.03 0.13 0.93 3.05 11.09 42.17 155.95629.91 N/A

0.01 0.02 0.07 0.53 1.97 5.39 22.2 61.3 228.01 N/A

0.0 0.01 0.02 0.15 0.3 1.15 4.33 18.48 274.31 N/A

Speed tests for different scenarios for different number of goals 
 and maximum depth, keeping the branching factor to be 2
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Figure 4: Heat-map representing the time taken (seconds)
for case studieswith varying number of goals andmaximum
depths with a branching factor of 2

https://github.com/RationalityEnhancementGroup/todolistAPI/tree/multi_smdp_points
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Figure 2: Graphical depiction of how the mini-SMDPs are solved. The mini-SMDP in red is solved first, followed by the ones
in blue and finally the mini-SMDPs in brown are solved last.
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0.39 0.97 1.22 1.36 2.55 4.54 8.53 11.84 16.89 43.17

0.19 0.44 0.71 2.04 2.5 4.21 6.45 10.74 14.48 35.0

0.13 0.54 0.75 1.7 1.26 5.69 4.96 8.06 12.19 32.97

0.13 0.22 0.37 1.81 1.24 2.13 3.68 6.47 10.14 25.68

0.08 0.16 0.2 0.68 1.22 1.85 2.68 5.27 9.74 23.93

0.03 0.08 0.12 0.38 1.0 1.14 2.06 4.0 6.44 18.0

0.02 0.06 0.11 0.2 0.8 0.74 1.44 2.52 4.84 19.17

0.07 0.03 0.04 0.13 0.34 0.38 0.93 2.23 3.39 7.24

0.01 0.02 0.02 0.06 0.26 0.2 0.52 1.1 2.36 6.13

0.01 0.01 0.04 0.02 0.04 0.09 0.22 0.53 1.03 2.55

Speed tests for different scenarios for different number of goals 
 and branching factor, keeping the maximum depth to be 2
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Figure 3: Heat-map representing the time taken (seconds)
for case studies with varying number of goals and branch-
ing factors with a maximum depth of 2
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0.52 6.13 109.92 N/A N/A N/A N/A N/A N/A N/A

0.27 2.36 53.58 N/A N/A N/A N/A N/A N/A N/A

0.16 1.1 22.01 N/A N/A N/A N/A N/A N/A N/A

0.05 0.52 9.93 N/A N/A N/A N/A N/A N/A N/A

0.03 0.2 6.15 N/A N/A N/A N/A N/A N/A N/A

0.01 0.26 2.57 75.12 N/A N/A N/A N/A N/A N/A

0.01 0.06 1.54 23.65 232.2 N/A N/A N/A N/A N/A

0.01 0.02 0.32 2.15 23.0 235.88 N/A N/A N/A N/A

0.01 0.02 0.07 0.53 1.97 5.39 22.2 61.3 228.01 N/A

0.0 0.01 0.01 0.02 0.06 0.03 0.05 0.07 0.17 0.1

Speed tests for different scenarios for branching factors 
 and  maximum depths, keeping the number of goals to be 2
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Figure 5: Heat-map representing the time taken (seconds)
for case studies with varying number of branching factors
and maximum depths and 2 goals

Even with such constraints, Figure 6 shows that a to-do list with
a depth of 3 and branching factor of 4 is easily solvable by our
proposed algorithm. Such a to-do list has a total of 576 tasks, which
is more than big enough for most real-life examples. This shows
that our proposed algorithm is practically useful.
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branching factor: 4
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branching factor: 7
branching factor: 8
30 seconds

Figure 6: Speed-test to see the trend of increasing goals for a
given branching factor with a maximum depth of 3

6 DISCUSSION
Summary and Interpretation. To improve productivity in complex

situations with multiple goals, people need to plan rigorously and
regularly re-evaluate their plan and potentially adjust it as the
situation changes. This is very effortful, time-consuming, and prone
to fall prey to human biases, such as the planning fallacy and the
sunk-cost fallacy. Hence, a scientific and computationally efficient
solution is required.

We devised a scalable AI-powered approach for assigning points
to the tasks on a person’s to-do list in such a way that the task that
are most valuable for their long-term goals are also most appealing
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in the short-run. The central idea of our method is to decompose
the problem hierarchically and computing the optimal plan at each
level of the goal hierarchy.

Limitations and Future Directions. Since our approach decom-
poses the full sequential decision problem hierarchically, its accu-
racy can be limited by the fact that it never considers the whole
problem at once. This is unproblematic for most general use cases,
but might be suboptimal in certain situations. Additionally, in this
article, we have only provided an analytical study of our algorithm’s
usefulness. Future studies should test how the points computed by
our method affect the productivity, procrastination, and motivation
of real people in the real world. Concretely, we are planning to
conduct a longitudinal field experiment in which the experimen-
tal group is supported by a to-do list app that uses our optimal
gamification method whereas the control groups either receive no
points, randomly generated points, or points computed by a simple
heuristic. Moreover, since the assumed value of slacking off affects
the recommendations of our method, future research should try to
measure this parameter empirically.

We are considering multiple potential ways to improve the func-
tionality of our system to make it more useful in the real world.
This includes supporting tasks that contribute to multiple goals
simultaneously. Moreover, we are planning to further decrease the
time complexity of generating solutions for larger to-do lists. One
step in this direction could be to allow our method to quickly update
the point values when the user makes a minor change to its inputs.
Additionally, helping users provide more accurate time estimates
could allow our method to make more realistic recommendations.

It has been argued that motivating people through extrinsic
rewards (rewarding) tends to be harmful in the long run [17]. How-
ever, points can be much more than just rewards [24] and gamifi-
cation is much more than adding points [13]. Our method should
therefore be used to design meaningful games that foster intrinsic
motivation [17] rather than to just choose the values of extrinsic
rewards. A simple first step could be to work out how the task
values computed by our method can be conveyed through other
game elements, such as levels and badges. This can, in principle, be
accomplished through simple rules that specify how many points a
user has to earn to attain each level or earn a certain badge.
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