Network Infrastructure Forensics
Felix Lindner

Recurity Labs GmbH
Wrangelstr. 4
10997 Berlin, Germany
fx@recurity-labs.com

Abstract: Incident identification, response and forensic analysis depend on the
ability to extract meaningful evidence from the suspected system. Such tools do
not exist for network infrastructure equipment. The significantly increased attack
resilience of common general purpose operating systems poses a surprising new
challenge to forensics, as attackers will likely shift their attention back towards
network infrastructure control. The paper discusses the importance of network
equipment forensics, the anatomy of devices and the attack types encountered.
Finally a method for performing forensics on a widely used type of network
equipment is presented.

1 Introduction

According to the definition, the goal of computer forensics is to explain the current state
of a digital artifact [Wi08]. Computer forensics is normally performed on common
desktop and server computer systems, digital media and data items. In the past, very
little attention was paid to computer forensics on network infrastructure equipment.

This paper first discusses the need for forensic analysis methods and supporting
technologies for network equipment and will show why the previously neglected
capabilities need to get build up quickly. Following, the paper classifies the types of
network equipment commonly encountered and the types of attacks that need to be
detectable. The paper concludes with a comparison of the currently used evidence
gathering mechanisms to a method developed by the author.

27

2 Network Equipment Forensics

Forensic investigators should be able to extract evidence from any sufficiently complex
electronic device in a regular computer network. As new device classes become common
on a regular basis, forensic investigators have to identify the means of performing
evidence gathering, examination and analysis on the new device classes. Recent
challenges for investigators include various mobile phone platforms, MP3 players and
portable storage devices. New capabilities have to be developed constantly as users store
relevant data in more diverse places, distributing information important for
investigations.

Digital forensic procedures have so far largely neglected the device class of network
equipment. For the purpose of this paper, we define network equipment as:

A physically enclosed component of a communications network that is built for
the purpose of performing programmed transport actions on data, based on
information within the transported data.

The definition encompasses all so-called “active network gear” with the exception of
simple repeater stations or otherwise “non intelligent” equipment, but excludes multi-
purpose operating systems that could perform the same task.

We will now review the requirement to have analysis methods and supporting
technologies for network equipment.

2.1 Attacker Focus Shift

The need to perform digital forensic investigations on a device class is usually created by
users storing personal information on devices of this class. Within this category also falls
the case of the device class becoming a target of malicious activity by itself, as attackers
must inject data into the device to perform directed attacks. Alternatively, the need for
digital forensics can also arise when the device class exhibits detectable traces of user
data or communication. The later argument holds true for network equipment by its very
nature, the former requires inspecting network equipment as a target more closely.

Directed attacks on network equipment were the norm in the early days of
communication networks, when sender or sink devices on the network were either dumb
or closely monitored equipment in the hands of experts. Directed attacks on network
equipment were declining in the more recent past, as the connected computer systems
with common operating systems became increasingly powerful, interconnected and
commonplace. The effort required to successfully attack a network device was now
comparatively large in contrast to the development of an attack against a common
operating system platform or widely used software. Additionally, successful intrusions
into network equipment are not as easily detectible as intrusions on multi-purpose
computer systems are. Accordingly, digital forensics has had little demand to perform
investigations on network equipment and the numbers on un-detected attacks are
probably much higher.

28

In the recent years, fueled by public demand to stop large scale intrusions and worm
outbreaks, the vendors and publishers of common operating systems have significantly
improved the protections shipped with their products. Security features, mitigation
technologies and better control over privileges have become an important aspect of any
operating system deployment decision made, from professional applications down to
home users. As security becomes a market factor, competition drives significant
improvements on all major operating system platforms, compilers and libraries.
Additionally, a plethora of third party security products is available and marketed to
close the remaining gaps left open by default installations and hard to secure application
software.

The success of this market-wide shift towards more secure software and installations can
be easily verified by the drastically lower numbers of newly detected vulnerabilities in
operating systems. Another indicator is the apparent end of the era of worms that rely on
software vulnerability exploitation for propagation. Not a single large outbreak has been
observed in the last years on platforms that used to be notoriously infected just a few
years ago.

It can, however, not be shown or even expected that the total number of attackers or their
skill level decreased over the same period of time. To the contrary, cyberspace warfare
has become an integral part of many first world nation states’ military operations.
Offensive cyber-warfare groups have now to prove their usefulness. Privately operated
groups, mainly illegal, have also banked on business models involving intrusions into
computer systems.

This produces a gap between the increase in efforts required for a successful intrusion
and the goals of such groups, may they be government sponsored or privately run
operations. Since network equipment provides significantly less resilience against
attacks than modern operating systems on desktops and servers, it is the opinion of the
author that the focus of professional attack groups will shift towards network equipment
again.

2.2 Network Equipment Attacks in the Wild

Very little is publicly known about successful attacks on network equipment. While a
number of articles have been published in so-called underground magazines [Ph00] on
different procedures to perform attacks and establish control of network equipment,
intrusions remain mostly undetected and hence undocumented.

Reports about the abuse of illegal access to network equipment are only recently
disclosed publicly. [Di08] discusses a case of blackmail in which the attacker(s) obtained
control over the router network and blackmailed the legitimate owner of the network for
restoration of their access without network downtime. The alternative for the legitimate
owners would have been an entire network shutdown and incremental restoration and
restart procedure, potentially requiring several days of downtime.

29

When inspecting publicly accessible information on attacks in general, it can be
observed that the real number of attacks on network equipment is not to be neglected. In
[BCO4], an open HTTP proxy server is inspected for malicious activity performed
through its service. 0.94% of all activity targets Cisco routers. When searching for
information on a single Cisco 10S vulnerability [CVEO1], sources such as [Te06] show
that it is actively scanned for and exploited in the wild five years after the vulnerability
has been reported and fixes are available. Since attackers rarely scan networks for
vulnerabilities that they consider extinct, reports like [Te06] indicate clearly that the
attackers consider it likely to still find vulnerable equipment.

2.3 Underlying Threats

To understand the underlying threat of compromised network equipment, it is necessary
to review the basic functionality of today’s communication networks. Almost any
network today uses the TCP/IP protocol suite [Po81], which by design relies on
intelligent network nodes taking decisions on the transport of user data from one point in
the network to another.

The communication endpoints in IP have very limited abilities to influence the path a
segment of the data (packet) takes from the sender to the sink. With the rapid expansion
of the Internet, all remaining functionality of sender-decided paths was blocked in the
network to prevent endpoints from influencing the availability of specific network paths.

The intelligent network nodes required by IP are network equipment. They rely on so-
called routing protocols to communicate network paths to each other. Without this
communication, the nodes cannot fulfill heir role. All routing protocols support their
implementation without authentication between the peers taking place, only some of the
more widely used protocols even support authentication. The inherent problem, even
with authentication deployed, is the full trust relation of nodes within the communication
network. Compromising a single node can in some cases already yield full control over
the communication path decisions in the entire network.

In reaction to the inherent insecurity of today’s computer networks, a variety of security
protocols on top of the existing infrastructure has been proposed and deployed (e.g.
[DRO6], [DDO03]). Common between all the security protocols is the protection of the
communication contents (integrity) and un-tempered sender identification. Additionally,
most of them offer confidentiality through encryption.

The security protocols protect their payload, but cannot influence the communication
path taken by the individual packets, as the communication infrastructure is transparent
to the security protocol. Accordingly, they can only offer to discard the communication
data items (packets) when they were modified by an unauthorized party during transport.
None of the communication protocol suites in wide use today offers the ability to choose
a different communication path or channel when the current channel is misbehaving
maliciously, and none of them could, as it would open the possibility to attackers for
direct misuse of this very functionality.

30

24 The Goal of Network Forensics

Based on the observations above, the goal of network equipment forensics must be the
ability to extract meaningful and complete evidence from network equipment. Analysis
should enable the legitimate operator of the network equipment to identify a successful
intrusion and show beyond reasonable doubt that an intrusion occurred. Additionally, it
should be possible to identify the sender of data that can be shown to have a relation to
the intrusion.

3 Network Equipment Anatomy

Network equipment, as any other computer system, is built by the basic blocks of at least
one processor (CPU), several types of volatile random access memory (RAM),
permanent (non-volatile) storage and interfaces to other systems. In contrast to multi-
purpose computer systems, network equipment makes use of the permanent storage
almost exclusively at boot time, as the storage provides the system software and initial
configuration. Once started completely, all information and state is kept in RAM, with
the only exception being configuration changes that are written back into permanent
storage and minor data items in small non-volatile memories. Additionally, network
equipment often has separate memory banks for special purposes, such as local module
memory or network interface memory, all of which is completely volatile.

As outlined, almost all evidence is volatile data, which is a significant difference to
general-purpose computer systems, where volatile data is only a small part of the
evidence collected. The forensic investigator needs a way to preserve a snapshot of the
volatile data from the device, as it contains almost all the evidence there is. The potential
to collect the evidence depends on the device class of the network equipment examined.
Two general device classes can be identified:

3.1 The Monolithic Device Class

Older network equipment is generally built as a combination of custom hardware designs
and software specifically developed for the hardware platform. Since the network
equipment market has significantly longer product cycles as other market segments in
information technology, the majority of deployed network equipment still follows the
monolithic design approach. Prominent examples of monolithic system designs are
routers and switches from vendors like Cisco Systems (IOS based) and HP.

The majority of monolithic devices run software that is termed “firmware”. The term is
used to indicate that the software is not a modular operating system, but rather a single
binary program compiled into self-contained executable code, with the goal of
minimizing the required amount of resources. Along with this design decision, vendors
usually abandon concepts such as kernel and process separation, virtual memory
protections and concurrent scheduling.

31

It should be noted that monolithic devices have no ability to recover from memory
corruption, the by far most common critical software fault class in such environments.
Due to the missing memory boundaries and process separation, the system cannot
terminate and restart selected parts. Therefore, the only solution is to restart the entire
device, which appears to be the generally accepted way of handling memory corruption.
Forensics must deal with this behavior; especially since attacks on vulnerable code (e.g.
buffer overflow exploitation attempts) cause memory corruptions.

Monolithic device firmware must support the collection of evidence through an
explicitly implemented functionality, as no standard interfaces exist to introduce the
feature. The functionality available is often designed for the vendor’s developers and not
for a forensic investigator. At the time of this writing, the author is not aware of a single
monolithic network device that explicitly offers evidence collection functionality for the
purpose of forensic analysis. However, developer functionality, although largely
undocumented and unsupported, can be used to achieve the same goals of full volatile
date collection.

3.2 The Embedded OS Device Class

The second large device class uses existing operating systems designed for embedded
platforms and implements the desired functionality as part of the system. Those systems
generally do have a separate kernel and user land processes, concurrent schedulers and
virtual memory with inter-process boundaries. They also provide more or less open
interfaces, as the embedded operating system is normally not implemented by the same
vendor and is therefore designed for flexibility rather than a unique use case. Typical
examples of this class are Juniper routers running a FreeBSD based system and the large
group of home network equipment (e.g. wireless access points and DSL routers) running
Linux.

Devices utilizing an embedded operating system as core provide better stability, as
processes are usually separated from each other and can crash individually. All
embedded operating systems support post mortem analysis of individual processes,
which can be used by the forensic investigator to analyze and identify the cause of the
crash. Unfortunately, access to post mortem analysis information is not exposed to the
user or administrator by most vendors. Therefore, the forensic investigator must find
other ways to access the information.

While vendors of this device class commonly do not support the addition of runtime
code to their devices, it is considerably easier to do than with monolithic devices. This
fact can be exploited by attackers and forensic investigators alike. While the attacker will
strive to embed binary code into the operating system kernel or a critical process, the
forensic investigator can use the build-in crash dump and logging mechanisms to obtain
evidence from the device.

32

33 Access to Evidence

Wile the device classes are extremely different by software design and architecture, the
forensic investigator will in both cases need to identify post mortem analysis features
usually left for the developers of the device. Depending on the device, the feature will
likely provide any of the following:

o External debugging access to the device for the purpose of obtaining a partial or
complete memory dump

e A preconfigured location for full memory dumps
e A fault analysis summary in text form

e An on-system kernel debugger

e A network accessible kernel debugger

It is common to all methods mentioned, that a configuration and preparation of evidence
collection must be performed before the to-be-observed event takes place. Currently, the
only option left when the necessary preparations have not been completed before the
event, is the immediate mirroring of the device’s memory contents using methods
similar to [Ap08], which is impractical for even the advanced forensic investigator.

It should be noted that none of the methods discussed in this section is currently in wide
use or part of any best practice recommendation.

4 Types of Attacks

Network equipment is generally targeted by the same attack types as common operating
system platforms are. However, in contrast to the later, network equipment is most
commonly attacked using modified or specially crafted network communication
messages. This includes modification of address caches of the ARP protocol, Domain
Name Resolution or neighbor information about other network devices. Within the same
class of attacks are injections of invalid information on network communication paths,
commonly referred to as routing protocol attacks, where the attacker emulates network
equipment himself and becomes part of the communication infrastructure. This type of
attack is easily recognizable with existing tools (see 5).

33

The same type of attack can also be applied to influence the network equipment directly
with the goal of achieving administrative access to it and being able to load modified
binary code or configuration settings. For the attack to succeed, the network equipment
must at some point in time request either parts of its binary code or its configuration over
the network. Commonly, such requests happen at boot time and involve entirely insecure
protocols, such as TFTP, in the process. If the attacker is able to redirect the
communication path for the device to a system he controls, the attacker can provide
arbitrary code or a configuration that will be loaded onto the device. Changes to the
configuration are in almost all cases recognizable by existing tools and procedures, while
changes to the runtime code require evidence collection methods as described in 3.3 and
further analysis.

The second important attack type against network equipment is the exploitation of
vulnerabilities in services provided by the equipment itself. The network equipment
offers network accessible services, such as remote management access, protocol
translation, protocol de-capsulation or informational services such as network time.
Since the exposed services have to handle requests from the outside, they can be
attacked by a malicious party. The types of vulnerabilities discovered in services on
network equipment naturally mirror those found in other software, namely buffer
overflows, integer overflows and format string vulnerabilities. All of them allow the
attacker to corrupt the memory of the process exhibiting the vulnerability, hereby
diverting the execution of binary code in a way favorable to the attacker.

While on multi purpose operating systems, the attacker usually injects binary code that,
upon execution, will open a command line interface towards the network (so-called
“shell code”), the approach taken is different with network equipment, as the attacker
will want to change the behavior of the device in a non-obvious but permanent way.
Therefore, the attacker modifies the binary code of the network equipment to divert
execution into a small chunk of code provided by the attacker, hereby introducing
additional behavior options. [Mu08] provides a discussion of such modification for
Cisco 10S devices. It is not possible to discover modifications of the binary code with
the regularly exposed user interface, even for the experienced network equipment
operator.

5 Current Evidence Gathering

The gathering of evidence from network equipment is today limited to different types of
remote monitoring and management.

34

5.1 Simple Network Management Protocol

The globally accepted standard for device management is the Simple Network
Management Protocol (SNMP), as it allows querying exposed information from the
device as well as changing the configuration settings at runtime remotely. While the
protocol supports the generation of messages to a centrally located message sink in the
network upon specific events, most information is obtained via query requests to the
device. This limits the amount if information the operator is able to collect, since the
network bandwidth is degraded by every query and therefore not available for customer
traffic.

Another limiting factor, from a forensics point of view, is the type of information
exposed via the SNMP Management Information Base (MIB). Vendors and network
operators alike focus naturally on the network specific information and only include
general system state information in the MIB. The internal state of the operating system
software is not regarded as important or useful to the network operator. Therefore,
SNMP rarely exposes data of that type.

5.2 Syslog

Another widely deployed information gathering approach is syslog. Syslog is a simple
and purely event driven protocol that transports logging information to a remotely
located host, where they can be stored in text files. Configured correctly, syslog allows
for slightly better monitoring of the network device’s software states than SNMP, as
events can be generated by any part of the software and are free-form text strings.
However, the information provided by most network equipment is still a small subset of
the internal state.

5.3 Debug filters

A third method of evidence collection is employing vendor specific debug output filters.
Usually available on the local or remote console of the device, vendor specific debug
output can be enabled for specific subsystems of the software. This often provides more
detailed information than SNMP and Syslog, at the expense of the device’s performance.
Enabling all available debug information could provide enough evidence to investigate
an intrustion, but is rarely practical, since it degrades the device’s performance to a
fraction of its regular throughput.

35

5.4 Looking Glasses and Monitors

To monitor the data network equipment uses to make communication path decisions,
operators use software on external hosts that participates in the routing protocols or uses
mechanisms like SNMP to query the respective tables from network equipment. These
so-called looking glasses and routing protocol monitors provide the operator with an
overview of the network’s state and greatly simplify the identification of misbehaving
network equipment.

5.5 Traffic Accounting

Network operators must monitor their devices and bandwidth for signs of overuse. They
also must be able to correlate network traffic to customers, since most billing models
depend on the traffic generated. Therefore, almost all larger networks make use of
accounting information generated by the network equipment and sent off to centrally
located accounting systems. An example of such functionality is Cisco System’s
NetFlow.

Accounting records may include data on traffic type, source network addresses and
physical ports used. In correlation with other data available, accounting records can be a
valuable source of evidence, since they are collected for billing and therefore the
collection mechanism has to fulfill requirements that make billing legally enforceable.
Accordingly, these mechanisms are implemented so that tempering with the records is
detectable and access to them is closely monitored, giving the forensic investigator a rare
case of solid evidence.

5.6 Summary of Current Methods

The currently widely deployed methods allow the detection of changes in the
communication paths of the network. The evidence collected by the methods described
can be sufficient to show the source of the communication path changes. However, it is
often hard to establish if the sender intentionally or inadvertently caused that change.
This is a design limitation of currently deployed communication networks. However, it
can be stated that evidence collection and therefore the respective analysis can be
conducted in reasonable depth, if the attack only influenced the communication path
logic of the network equipment.

Whichever of the currently deployed methods is considered, none of them provides
detailed enough evidence to perform an analysis regarding attacks that affect the network
equipment’s software. It is therefore hard to identify malicious network equipment
software changes or single out software failures caused by intentional attacks against
those caused by functionality issues. In the rare case that logging information provides
enough indicators to conclude an attack could have taken place, the forensic investigator
is currently at a loss for means of collecting the full evidence for further analysis.

36

6 Forensics for Monolithic OS Designs

To augment the methods described in 5, the network equipment family with the largest
market share, Cisco System’s 10S routers and switches, was analyzed for possibilities of
significantly improved evidence collection mechanisms and procedures. The focus is on
a separation of the evidence collection and analysis steps.

Evidence collections should be simple and easy to understand, preferably using a
mechanism comparable to accepted methods such as hard drive imaging. The result
should be unaltered and complete. The analysis tools, working on copies of the evidence,
shall allow the dissemination of the evidence to a point where intrusions can be clearly
detected and shown, including any modifications of binary code or critical data
structures.

6.1 Evidence Collection through Memory Dumps

As already mentioned in 3.3, access to evidence in closed network equipment is
normally achieved by means originally developed for the vendor’s developers. In the
case of Cisco IOS devices, the functionality used is the creation of full system memory
dumps. The devices can be configured to write an unaltered memory dump of all
mapped system memory onto a flash memory card or a remote host.

The advantage of the method is the ability to create memory dumps at any point in time
during runtime of the device as well as upon critical software failures that cause the
system to restart. In the event of a system restart, the memory dump is the only way to
preserve any evidence from volatile memory.

The disadvantage from a forensics point of view is the reliance on functionality of the
potentially compromised system to obtain the evidence. Technically, the modified device
software can write arbitrary data instead of the memory dump, if the right code region
has been modified by the attacker. Additionally, carefully crafted device crashes can
leave the device in a state that doesn’t allow it to write memory dumps anymore, as all
information about memory organization and structure is already lost.

6.2 Evidence Collection through GDB

Cisco System’s 10S devices offer another undocumented developer access to their
system: the GNU Debugger (GDB) serial debug protocol, a widely used text based
protocol for driving embedded kernel debuggers. The protocol relies on a GDB debugger
stub in the target device; a very small code element that handles basic commands
received from the serial console port.

Using the GDB debugger stub, the forensic investigator can obtain partial or full
memory dumps from an IOS device by connecting a respective dump tool and halting
the device’s execution. Only the very small GDB stub will be executed when the device
is in kernel debugging mode.

37

This presents another method of obtaining on-device evidence. The method’s clear
disadvantage is that it cannot be executed automatically upon critical system failures and
requires a specialized software tool to be connected through the serial console port.
Additionally, the method is extremely slow and therefore time consuming. Its advantage
lies in the possibility to query arbitrary memory addresses and as an alternative for the
full memory dump process, due to the GDB stub’s functionality of halting execution and
reporting CPU exceptions directly to the connected inspection tool, presenting a way to
capture otherwise unhandled cases.

6.3 Analysis

Evidence colleted using the methods presented in 6.1 and 6.2 consists of a raw copy of
the system memory. To analyze the obtained data, an analysis tool must be able to
determine the former memory structure and gradually recreate abstraction from pure
data. Based on the recreated data structures and their relation to each other, the analysis
tool must be able to distinguish patterns of abnormal behavior, memory corruptions,
modified binary code and additional functionality running on the inspected device at the
point of the evidence collection. Such analysis tool has been developed and made
available for Cisco IOS devices [Li08].

6.4 Abstraction Recovery

For the initial recreation of the memory layout, an analysis tool can utilize information
from the device’s software. The device software is in almost all cases available as
separate package, allowing users and operators to upgrade their devices. The software
distribution contains all information about the internal memory layout of the device.
Using reverse engineering techniques, an analysis tool can identify the intended memory
layout of the running system and compare it to the obtained evidence as well as to the
limits the CPU platform of the device imposes on memory layouts.

Given a successfully reconstructed memory map, the analysis tool can search for
patterns of well known data structures. The information base must be created manually
from reverse engineering results, as the device vendor usually does not publish much
detail about internal data structures. When data structures are found, their information
can be added to a dynamic knowledge base, which in turn can provide more abstract
information to higher level analysis code.

38

6.5 Backdoor Detection

Once sufficient abstraction and detail is built up, the detection of attack footprints can be
performed. The tests performed are, by nature, very specific to the device type and
device software employed. A generic test applicable to all device classes is the
comparison of the binary code segments identified in the evidence to the same segments
in the device’s original firmware. If a difference is detected, the runtime code was
modified. Since self-modifying code is rarely used on embedded devices in general, the
differences highlight areas for future reverse engineering to the forensic investigator
[Ci08]. Other detections include the inspection of process stacks for signs of code
redirection into non-code areas of the memory, heap integrity checks and extraction of
background scripts.

6.6 Traffic Extraction

Given a full memory dump of the device in question, a successfully implemented
advanced forensics method is the extraction of data packets residing in the device’s
memory at the time of the evidence collection. In case the evidence was produced due to
a crash of the device, this greatly increases the chances to identify both the offending
data packet and the source of the offense.

In a first step, responsible data structures are inspected for information on the memory
location of network protocol packets. Identified data packets can easily be extracted into
a common file format for network traffic analysis, such as the widely used PCAP format,
and analyzed by the forensic investigator further in publicly available tools (e.g.
Wireshark).

Once this list is obtained and verified, the process stacks and other user memory areas
can be inspected for data that directly references the responsible network data structures.
If the device’s firmware tracks ownership and references of memory blocks, these can
also be used to reference code functionality to data handled. If relations between binary
code of the device’s software and a data packet can be shown, the forensic investigator
can inspect the disassembled binary instructions for signs of a vulnerability exploited by
the data packet in question. This allows to uniquely identifying vulnerabilities exploited,
even if they are not previously known to the vendor or the general public.

7 Conclusion

The Internet Protocol based infrastructure used worldwide today is unable to cope with
single compromised network nodes by itself, not even with manual intervention.
Security protocols allow the detection of mischief in such networks, but don’t present a
way to resolve the issue once detected. Given the tremendous importance of network
communication and availability in today’s world, it can be argued that users will be
forced to accept to work across compromised infrastructure if the alternative is to be
offline.

39

Forensic investigators must be urgently put into the position to perform on-demand in-
depth analysis of potentially attacked and compromised network equipment, as it is
likely that attacker focus will shift in that direction. The lack of methodologies and tools
for performing forensics on network equipment must be overcome to be able to detect,
analyze and trace infrastructure attacks as well as attackers.

The methods presented in this paper have been shown to work well for the specific
subset of Cisco 10S network devices, but may be applicable to a large range of
monolithic devices, given comparable memory access methods. The incremental
analysis approach allows producing compact and targeted information for the forensic
investigator and preserves the evidence in its unmodified form. While the developments
in this area are fairly recent, the author believes that network infrastructure forensics
abilities will become crucial in the future.

8 Bibliography

[Wi08] Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Computer_forensics

[Di08] Jerry Dixon, National Member Alliance's Vice President for Government Relations,
Infragard: Keynote - Quest for the Holy Grail, BlackHat Briefings Washington DC, 2008

[Ph00] Anonymous: Phrack Magazine, Volume Oxa Issue 0x38, 0x10[0x10],
05.01.2000

[Fx02] FX: Burning the bridge: Cisco 10S exploits, Phrack Magazine, Volume 0x0b, Issue
0x3c, Phile #0x07, 28/12/2002

[BC04] Brown, D.; Clore, E.: Honeynet Scan of the Month 31 submission,
http://honeynet.opensourcecommunity.ph/scans/scan31/sub/doug_eric/, 2004

[Te06] Anonymous: Forum entry “GET /level/16/exec/-///pwd HTTP/1.0 is this a hack
attempt?”, http://www.techienuggets.com/Comments?tx=420, 2006

[CVEO1] Common Vulnerabilities and Exposures: CVE-2001-0537 “IOS HTTP Authorization
Vulnerability”, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0537

[Po81] Postel, J (Ed): Internet Protocol, DARPA Internet Program, Protocol Specification
(STD0005), September 1981

[DRO6] Dierks, T.; Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.1,
RFC4346, April 2006

[DD03] Doraswamy, N., Harkins, D.: IPSec — The New Security Standard for the Internet,
Intranets, and Virtual Private Networks. Second Edition Auflage. Prentice Hall, 2003

[Ap08] Applebaum, J. et. al.: Lest We Remember: Cold Boot Attacks on Encryption Keys,
Princeton University, Electronic Frontier Foundation, Wind River Systems, 2008,
http://citp.princeton.edu/memory/

[Mu08] Muiiz, S.: Killing the myth of Cisco I0S rootkits: DIK (Da los rootKit), Core
Technologies, March 2008

[Li08] Lindner, F.: Developments in Cisco 10S Forensics, January 2008, http://www.recurity-
labs.com/content/pub/Recurity_Labs_Whitepaper_Cisco_Forensics.pdf

[Ci08] Detected Cisco 10S rootkit using text segment comparison:
http://cir.recurity.com/cir/case.ashx/120EF269A5BC2320730E60289A4B84D9047CEC
EE/report-detailed.html

40

