
Combining Kieker with Gephi for Performance Analysis
and Interactive Trace Visualization

Christian Zirkelbach
Software Engineering Group

Kiel University, Germany
czi@informatik.uni-

kiel.de

Wilhelm Hasselbring
Software Engineering Group

Kiel University, Germany
wha@informatik.uni-

kiel.de

Leslie Carr
Electronics and Computer

Science
University of Southampton, UK

lac@ecs.soton.ac.uk

ABSTRACT

Performing an analysis of established software usually is
challenging. Based on reverse engineering through dy-
namic analysis, it is possible to perform a software perfor-
mance analysis, in order to detect performance bottlenecks
or issues. This process is often divided into two consecu-
tive tasks. The first task concerns monitoring the software,
and the second task covers analysing and visualizing the
results.

In this paper, we report on our performance analysis
of the Perl-based open repository software EPrints, which
has now been continuously developed for more than fifteen
years. We analyse and evaluate the software using Kieker,
and employ the visualization tool Gephi for performance
analysis and interactive trace visualization. This allows
us, in collaboration with the EPrints development team,
to reverse engineer their software EPrints, to give new and
unexpected insights, and to detect potential bottlenecks.

1. Introduction

Reverse engineering is often employed to understand legacy
software systems. One option is employing static analysis
of a program’s source code. Unlike static analysis, which
focuses on examining the source code, dynamic analysis
methods operate on the system execution. This provides
valuable insights into a software system and its behaviour
during a program’s execution [4]. But even if an instru-
mentation is possible, the visualization is often challeng-
ing. The latter problem is often addressed via trace visu-
alization, but finding an appropriate representation for an
specific case is difficult. In this paper, our approach to re-
verse engineering of legacy software systems via analysing
monitoring data of a program’s operational use, based on
dynamic analysis, is presented. We report on the per-
formance analysis of the Perl-based software EPrints [2]
with focus on analysing and evaluating it using the mon-
itoring framework Kieker [12]. EPrints has been contin-
uously developed for more than fifteen years. In order
to aid the process of program comprehension, we analyse
our monitoring results with two types of trace visualiza-
tion and use their advantages to address different purposes

and phases within our project. Therefore, we combine the
batch-oriented visualization tool Graphviz [8] with the in-
teractive visualization tool Gephi [1]. One of the main
goals of the project presented in this paper was to detect
potential bottlenecks in the architecture of Version 3.3.12
of EPrints in order to gather useful information to elimi-
nate them in the planned release Version 4. For this forth-
coming major release, a significant restructuring of the
software architecture is planned. The rest of this paper
is organized as follows. In Section 2, we will present the
initial analysis results, visualized via Graphviz. We refine
this analysis through interactive graph exploration with
Gephi in Section 3. Section 4 reports on the detection of
performance bottlenecks. In Section 5 we discuss related
work regarding our approach. Finally, the conclusions are
drawn and future work is described.

2. Batch Visualization via Graphviz

Initially, we applied a full instrumentation to EPrints,
i.e. we monitored the complete software system by weav-
ing monitoring probes around all Perl packages. By de-
fault, Kieker employs Graphviz1 [8] to visualize the gen-
erated graphs as so-called component dependency graphs.
Since the initial analysis of a complete system usually pro-
vides voluminous representations of the observed monitor-
ing data, some complexity reduction is required. With
reference to Kieker and Graphviz, it is possible to refine
and reduce this representation either via modifying the
aspect-oriented instrumentation, as mentioned before, or
via configuring Kieker’s analysis pipeline, as we did in pre-
vious projects [9, 10]. However, as we are interested in a
performance analysis, the visualization of our graphs via
Graphviz in form of dependency graphs turns out to be
inappropriate. We need support to modify the graph and
to filter for highly-frequented packages and exceptional re-
sponse times. This requires an iterative approach.

3. Interactive Trace Visualization with
Gephi

Our initial analysis with Kieker and visualization via Gra-
phviz provides an overview of the software system. We try
to reconstruct the EPrints architecture in order to identity
packages that may contain potential bottlenecks. Since
our visualization via Graphviz meets its limits for our pur-
pose, as reported in Section 2, we employ another visual-
ization tool, namely Gephi [1], an interactive visualization
and exploration platform for handling graphs.2 The itera-
tive workflow, for our performance analysis, is illustrated

1http://www.graphviz.org
2http://gephi.org



Figure 1: Our performance analysis workflow

in Figure 1.

Gephi is able to import the Graphviz graphs that are
generated by Kieker.Analysis. Based on features such as
dynamic filtering and layout algorithms it is possible to
further process our initial graphs for improved program
comprehension and additional analyses. Thus, the com-
ponent dependency graph of our full instrumentation is
interactively analysed and reduced with Gephi. Further-
more, we aggregate nodes based on their package hier-
archy in order to obtain a more suitable overview with
respect to a system architecture level. Aiming at further
abstraction, we reduce our obtained graph with Gephi to
display only first-level packages. As a result, we obtain the
coloured dependency graph in Figure 2. The nodes rep-
resent Perl packages, including their sub packages. Edges
express dependencies among them. Compared to the ini-
tial graph of our full instrumentation, the reduced graph
is well-structured. The colors indicate the source nodes of
the edges and the numbers represent the number of calls
for this specific edge. At this stage of our performance
analysis, we are able to focus our visualization on the
identification of packages and their dependencies that may
cause performance issues. Thereupon, we find suspicious
calls from the EPrints.Database to the EPrints.Repository
package. These calls are passing by the EPrints.Obj and
EPrints.Metafield packages, which are supposed to han-
dle database-related operations. Thus, we identify a vi-
olation of intended architecture rules. This observation
leads us to a detailed analysis of dependencies regarding
EPrints.MetaField.* using Gephi.

Figure 2: Colored component dependency graph
for EPrints using Gephi

4. Performance Bottleneck Identifica-
tion

As a result of obtaining detailed information on the de-
pendencies among the Perl packages and the number of
calls via Gephi, we are able to instrument the software
at dedicated places in the source code to focus on po-
tential performance bottlenecks. We start with our ob-
servations from the previous section and re-instrumented
only a small subset of selected packages. Based on the
analysis with Kieker and the subsequent visualization via
Graphviz we are able to decide whether we reached a suf-
ficient instrumentation level or not. In insufficient cases,
we further refine our instrumentation, until we are satisfied
with the obtained level of detail. This approach is based
on the aforementioned workflow, which was illustrated in
Figure 1. Subsequently, we used Gephi to interactively
modify, and visualize the graphs.

Our first detailed instrumentation is applied to the pack-
age Screen.Items.*. This is a central package with multiple
sub packages, that handles processing display components.
We analyze the dependencies among the operations within
these packages and also their respective execution times.
In this context, we ignore the number of calls and focus on
the two most suspicious operations (based on the response
time), namely render() and render items(), which take a
large share of the overall response time. After drilling
down the monitoring to this specific area, the visualization
via Graphviz is sufficient for our first analysis purposes.
However, to find causes for the high response times within
these two operations, it is necessary to locate the related
outgoing calls (edges) within the component dependency
graph, based on the initial full instrumentation using fil-
tering techniques. This results in monitoring the pack-
age EPrints.Database.*, allowing us to find the database-
related operations, which may cause high response times.
With respect to the obtained maximum response times,
two operations, namely do() and create table(), are sus-
picious. In comparison to the total response time, they
take up to a third of the total, which is a significant share.
Therefore, we further analyse these operations with re-
spect to possible performance issues.

Figure 3: Detailed analysis of dependencies for
EPrints.MetaField.* using Gephi



Additionally, we examine the EPrints.MetaField.* pack-
ages. Again, we refine the instrumentation and generate
a dependency graph on the operation-level. This leads
us to a detailed analysis of the related dependencies us-
ing Gephi, as shown in Figure 3. The graph shows re-
lated calls annotated with the number of calls. We fo-
cus on the top ten operations, based on the number of
calls. The most interesting operations within the graph
were value from sql row() (328 calls) with a maximum re-
sponse time of 110 ms and get property() (438 calls) with
212 ms. Both are handling database-related transactions.

5. Related Work

In this section, we discuss some related work in the area
of trace visualization. Lange et al. [11] report on their
software Program Explorer, which visualizes a program’s
interaction, for a given execution trace. In comparison
to our approach they are limited to C++ software. In
this project we employ an instrumentation for Perl, but
we also support other programming languages like Java or
COBOL. The tool Web Services Navigator [5] is a plug-
in feature for the Eclipse platform and provides 2D graph
visualizations of the communication of web services. It of-
fers five different views for various purposes. Compared to
our approach, they are limited to SOAP messages and re-
construct service transaction flows instead of dependency
graphs. Cornelissen et. al present ExtraVis [3], which vi-
sualizes a program trace in two synergistic views, namely
a circular bundle view and a massive sequence view. The
first view utilizes hierarchical elements, including their call
relationships to display the interaction of trace. The latter
view provides a global overview of the trace. Another ap-
proach which visualizes program traces is ExplorViz [7],
which monitors traces for large software landscapes and
offers the visualization of a landscape and system level
perspective. While the landscape perspective, which pro-
vides an overview of the software, employs a notation sim-
ilar to UML, the system level perspective utilizes the city
metaphor. In contrast to ExtraVis and ExplorViz, we
combine two different kinds of visualization tools, utilize
interactive graph exploration and focus on the detection
of performance bottlenecks.

6. Conclusions

In this paper, we report on our approach of conducting a
performance analysis of the long-term developed software
system EPrints combining two visualization tools. We em-
ploy Kieker to reconstruct architectural models based on
the monitored data, and Graphviz respectively Gephi to
visualize the results. As Graphviz turns out to be insuffi-
cient for detailed analysis purposes, an interactive reduc-
tion of the visualized data through Gephi is required. We
detected some performance bottlenecks within the soft-
ware and could advise some changes for the next release.
In addition to our work related to Version 3.3.12 of EPrints,
the EPrints team already used Kieker for their current de-
velopment release of Version 4 and debugged and fixed
an infinite loop within the MetaField package. In the fu-
ture, Kieker can be integrated upfront to establish auto-
mated quality management procedures such as continuous
integration. Furthermore, we plan to perform additional
performance analyses with other application performance
management tools. As a first step we employed ExplorViz,
which is able to import our generated Perl monitoring
logs, and conducted a performance analysis [6]. For details

please refer to the extended version of our paper [13].

7. References
[1] M. Bastian, S. Heymann, M. Jacomy, et al. Gephi:

an open source software for exploring and
manipulating networks. In Proc. of the Third Int.
AAAI Conf. on Weblogs and Social Media, pages
361–362, 2009.

[2] M. R. Beazley. EPrints institutional repository
software: A review. Partnership: the Canadian
Journal of Library and Information Practice and
Research, 5(2), 2010.

[3] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen,
J. van Wijk, and A. van Deursen. Understanding
Execution Traces Using Massive Sequence and
Circular Bundle Views. In Program Comprehension,
2007. ICPC ’07. 15th IEEE Int. Conf. on, June
2007.

[4] B. Cornelissen, A. Zaidman, A. Van Deursen,
L. Moonen, and R. Koschke. A systematic survey of
program comprehension through dynamic analysis.
Software Engineering, IEEE Transactions on,
35(5):684–702, 2009.

[5] W. De Pauw, M. Lei, E. Pring, L. Villard,
M. Arnold, and J. Morar. Web Services Navigator:
Visualizing the execution of Web Services. IBM Sys.
Journal, 44(4), 2005.

[6] F. Fittkau, S. Roth, and W. Hasselbring. ExplorViz:
Visual runtime behavior analysis of enterprise
application landscapes. In Proc. of the 23rd
European Conf. on Inf. Sys. (ECIS 2015), May 2015.

[7] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring.
Live Trace Visualization for Comprehending Large
Software Landscapes: The ExplorViz Approach. In
Proc. of the 1st IEEE Int. Working Conf. on Soft.
Vis. (VISSOFT 2013), September 2013.

[8] E. R. Gansner and S. C. North. An open graph
visualization system and its applications to software
engineering. Software – Practice and Experience,
30(11):1203–1233, 2000.

[9] W. Hasselbring. Reverse engineering of dependency
graphs via dynamic analysis. In Proc. of the 5th
European Conf. on Software Architecture, ECSA ’11.
ACM, 2011.

[10] H. Knoche, A. van Hoorn, W. Goerigk, and
W. Hasselbring. Automated Source-Level
Instrumentation for Dynamic Dependency Analysis
of COBOL systems. In Proc. of the 14. Workshop
Software-Reengineering (WSR ’12), pages 45–46,
May 2012.

[11] D. B. Lange and Y. Nakamura. Program Explorer:
A Program Visualizer for C++. In Proc. of the
USENIX Conf. on Object-Oriented Techn.
(COOTS’95), 1995.

[12] A. van Hoorn, J. Waller, and W. Hasselbring.
Kieker: A framework for application performance
monitoring and dynamic software analysis. In Proc.
of the 3rd ACM/SPEC Int. Conf. on Performance
Engineering (ICPE 2012), pages 247–248. ACM,
2012.

[13] C. Zirkelbach, W. Hasselbring, and L. Carr.
Performance Analysis of Legacy Perl Software via
Batch and Interactive Trace Visualization. Technical
Report TR-1509, Department of Computer Science,
Kiel University, Germany, Aug. 2015.


