
Using Trusted Execution Environments in Two-factor

Authentication: comparing approaches

Roland van Rijswijk-Deij1,2 and Erik Poll1

1Radboud University Nijmegen, The Netherlands

{rijswijk,erikpoll}@cs.ru.nl
2SURFnet bv, Utrecht, The Netherlands

Abstract: Classic two-factor authentication has been around for a long time and has
enjoyed success in certain markets (such as the corporate and the banking environ-
ment). A reason for this success are the strong security properties, particularly where
user interaction is concerned. These properties hinge on a security token being a physi-
cally separate device. This paper investigates whether Trusted Execution Environments
(TEE) can be used to achieve a comparable level of security without the need to have a
separate device. To do this, we introduce a model that shows the security properties of
user interaction in two-factor authentication. The model is used to examine two TEE
technologies, Intel’s IPT and ARM TrustZone, revealing that, although it is possible to
get close to classic two-factor authentication in terms of user interaction security, both
technologies have distinct drawbacks. The model also clearly shows an open problem
shared by many TEEs: how to prove to the user that they are dealing with a trusted
application when trusted and untrusted applications share the same display.

Keywords: trusted execution environment, Intel Identity Protection Technology, IPT,
ARM TrustZone, two-factor authentication

1 Introduction

Two-factor authentication, based on “something the user knows” and “something the user

has”, is a mature technology that has been around for a long time1. Classic two-factor au-

thentication technologies2, based on one-time password or challenge/response algorithms,

have favourable properties from a user interaction perspective. Figure 1 shows an abstract

model for user interaction in classic two-factor authentication. It shows a security token

on the left and the user’s regular device (e.g. laptop, tablet, . . .) on the right. The model

clearly shows the strict physical separation between the trusted environment (token) and

the untrusted environment (laptop, etc.). Whenever a user interacts with one of the two

devices it is always clear whether they are dealing with a trusted device.

Smart cards (also often used as authentication tokens) are an exception to this model. Most

cards lack a display and a means to input data3. This means that the user has no (or only

1For example, the first RSA SecurID token was introduced in 1987.
2For a comprehensive overview of two-factor authentication solutions we refer to [vRvD11].
3There are exceptions, e.g. NagraID cards http://www.nidsecurity.com/

20

Display #1 Display #2

CPU #1

User input #1

CPU #2

User input #2

Token User device

Trusted

Untrusted

Physical
Boundary

Figure 1: User interaction in classic two-factor authentication

a weak) assurance about the integrity of the data displayed on their screen and about the

confidentiality of data entered and sent to the card (e.g. their PIN).

One solution to this problem is to use smart card readers with an integrated keypad for PIN

entry and a display. These provide more assurance that the user is interacting directly with

the card. A downside is that this requires the reader to be a separate device; this is less

attractive because of cost and users needing a reader everywhere they use their card. It also

precludes using the readers commonly integrated in modern laptops and smart phones.

In this paper we discuss a different approach to user interaction in two-factor authenti-

cation: the use of a Trusted Execution Environment (TEE). We investigate if the security

model of classic two-factor authentication can be approached for smart cards without the

burden of requiring a separate trusted card reader with its own I/O. To do this, we ex-

plain what we mean by a Trusted Execution Environment in section 2 and introduce two

examples, one from Intel and one from ARM. We then show abstract models for user in-

teraction using these two approaches to a TEE. The paper ends with a comparison of these

two approaches and the classic two-factor model and gives directions for future research.

Our contribution We introduce a conceptual model for user interaction with Trusted

Execution Environments, which we apply to two concrete TEE technologies (Intel IPT

and ARM TrustZone). We show that the model enables us to reason about the security

aspects of the interaction between the user and a TEE. The model also clearly illustrates

the open problem of how the user can ascertain that they are really dealing with a trusted

application on a display that is shared between trusted and untrusted applications.

2 Trusted Execution Environments

Many definitions for a TEE are influenced by the Trusted Computing Group’s (TCG) point

of view, as the TCG-specified Trusted Platform Module (TPM)4 is the most pervasive

approach to trusted computing currently on the market.

4http://www.trustedcomputinggroup.org/developers/trusted_platform_module

21

Vasudevan et al. [VOZ+12] provide a more technology-neutral description, describing a

set of features that enable trusted execution5. These can be summarised as follows:

• Isolated Execution – ensures applications execute completely isolated from and

unhindered by others and guarantees that any code and data is protected at run-time.

• Secure Storage – protects persistently stored data (e.g. cryptographic keys) belong-

ing to a certain application from being accessed by other applications.

• Remote Attestation – enables remote parties to ascertain they are dealing with a

particular trusted application on a particular TEE.

• Secure Provisioning6 – enables communication by remote parties with a specific

application on a specific TEE while protecting integrity and confidentiality.

• Trusted Path6 – a channel for the user to input data to the TEE and for the TEE to

output data to the user; the channel protects against eavesdropping and tampering.

The remainder of this section examines two TEE technologies, Intel’s ITP and ARM’s

TrustZone.

2.1 Intel Identity Protection Technology (IPT)

It is hard to find technical documentation about IPT. The only public documentation con-

sists of marketing materials and high-level white papers [Int12, Car12, Smi11]. Careful

reading of these, however, paints a picture of what IPT is. Intel markets IPT as a number

of applications; we describe these below based on Intel’s documentation.

One-time Passwords (OTP) The IPT OTP application resembles OTP tokens sold by

vendors such as RSA (SecurID) and Vasco (DigiPass). Intel provides a basic implementa-

tion based on the OATH time-based OTP algorithm [MMPR11]. Several vendors of classic

OTP solutions have also ported their OTP algorithms to IPT (see [Int12], p. 8).

PKI In [Int12] Intel claims that the PKI application7 introduces hardware protection

for RSA keys. The IPT PKI application integrates with Windows applications using a

Cryptographic Service Provider (CSP) provided by Intel for Microsoft’s CryptoAPI. This

is similar to how PKI-enabled smart cards are usually integrated in Windows applications.

5Note also that a TEE is much more than just a TPM, which would fulfill only some of the features listed.
6Note: secure provisioning is I/O with a remote party, a trusted path is local secure I/O with the user.
7Intel sometimes refers to IPT with PKI as Platform Embedded Asymmetric Token (PEAT) (e.g. [Smi11]).

22

Protected Transaction Display (PTD) PTD is not really an application but rather a

feature that supports IPT applications. In documentation Intel describes how this feature

can be used to secure PIN entry by the user. The “How It Works” video on Intel’s website

also shows PTD being used for confirming transactions (e.g. of a bank transfer).

NFC Intel also includes NFC as one of the technologies under the IPT umbrella, but

insufficient information is available for us to make any claims about NFC and its relation

to IPT, so we have chosen to ignore it in our discussion.

2.1.1 Architecture

IPT platform middleware ➐

ApplicationInstaller
IPT
applet ➌

Operating SystemManagement Engine ➊Secure
Storage ➎
(TPM?)

Display ➏ Java VM ➍

Trusted

Untrusted

IPT
applet

IPT
applet

Main CPU (x86_64)ME CPU ➋

System Local Bus

Mixed
Application

Figure 2: IPT abstract architecture (for a detailed explanation see §2.1.1)

Figure 2 shows an abstract architecture of IPT. It shows the different components iden-

tified in Intel’s documentation and what environment these components belong to. The

paragraphs below provide more detail on each component. Notably absent in this archi-

tecture is a trusted path for user input, this is discussed in more detail in section 4.

Management Engine The Management Engine ➊ (ME) appears to be the core of IPT.

Based on the naming of the ME it is very likely that Intel re-uses the ME included in their

Active Management Technology (AMT)8. Assuming this is the case, the ME runs on a

separate CPU (an ARC4 RISC processor, shown as ➋ in Figure 2) that runs the Nucleos

Real-time OS9. IPT applications run as applets ➌ on a Java VM ➍ inside the ME.

Secure Storage ➎ The OTP and PKI application rely on secure storage for key material.

It proves difficult to determine if a single subsystem fulfills this function. For OTP Intel

[Int12] mentions that one-time passwords are based on a machine-specific key generated

by the Intel chipset, but there is no indication of how and where this key is stored. For PKI

they [Car12] mention that keys are stored on the hard drive and are wrapped with - what

8A technology for remotely managing systems, for instance desktop systems in a large enterprise

(http://en.wikipedia.org/wiki/Intel_Active_Management_Technology)
9http://www.mentor.com/embedded-software/nucleus/

23

Intel calls - a Platform Binding Key. All operations on keys then take place in hardware

where the key is unwrapped before use. The documentation does not explicitly state this,

but it seems likely that the underlying technology used for this is (similar to) a TPM.

Display ➏ It is unclear how the secure display feature integrates with the rest of the

system. The examples [Int12, Car12] show that the untrusted OS “sees” black boxes where

trusted content is rendered on the screen. This implies that IPT either relies on memory

protection for the graphics frame buffer that prevents the untrusted OS from accessing

protected parts of the frame buffer, or that the trusted environment has its own frame

buffer that is overlaid on frame buffer data from the untrusted OS. It is highly likely that

this feature only works with an integrated graphics processor that is part of the chipset.

IPT platform middleware ➐ Communication between applications running in the reg-

ular OS on the main CPU and IPT applications in the ME requires some sort of channel.

Intel has middleware components that provide such a channel to applications.

Applications that run in the IPT ME can be installed at will. This requires a conduit for

installing applications into the ME, a role also performed by the IPT platform middleware.

Attestation and secure provisioning A system with IPT can perform remote attestation

to prove that the IPT implementation is genuine using the Enhanced Privacy Identifier

(EPID) scheme [BL07]. IPT can also set up a mutually authenticated secure channel with

the issuer of the attestation identity using Intel’s SIGMA protocol [WL11]. This mutually

authenticated secure channel can, for instance, be used for secure provisioning.

Developing for IPT As already mentioned, Intel works with independent software ven-

dors to port their OTP solutions to IPT. This implies that there is a software development

kit available for IPT. We inquired with Intel as to the availability of an SDK. Intel indicated

that such an SDK exists, but that access to the SDK requires a contract with Intel.

IPT and TEE requirements Intel does not market IPT as a TEE. The architecture de-

scribed above, however, when combined with the description of IPT applications and fea-

tures in section 2.1, aligns well with the five requirements for TEEs introduced in section

2. Based on this we think that the underlying technology of IPT must be viewed as a TEE.

2.2 ARM TrustZone

ARM offers a technology platform that is similar in its applications to IPT, called Trust-

Zone. Where IPT currently seems to be mostly geared towards use in PC or server class

systems, ARM TrustZone is aimed at system-on-a-chip (SoC) architectures used in mobile

devices such as smart phones and tablets. This section provides a high-level overview of

TrustZone, mostly based on [ARM09].

24

2.2.1 Architecture

ARM specialises in providing designs for (parts of) so-called Systems-on-a-Chip (SoCs).

This is reflected in the TrustZone architecture. The core of TrustZone is a “two worlds”

paradigm, with a normal world and a secure world. This concept shows up all through the

architecture. At the hardware level the two worlds are separated on the system bus. What

is in effect a special 33rd address line on the bus determines whether bus transactions are

part of either one of the worlds. Devices connected to the bus set this address line during

a read or write action to indicate whether they are operating in the normal or the secure

world. The bus mediates access from bus masters to slaves such that a secure master may

access both secure as well as normal slaves whereas a normal master may only access

normal slaves and will trigger a bus error if it attempts to access a secure slave.

Normal
User Mode

Normal
Privileged Mode

Normal world

Secure
User Mode

Secure
Privileged Mode

Monitor

Secure world

Figure 3: Security Extensions abstract model

ARM has also created extensions to its

CPU cores called ARM Security Exten-

sions. These allow a single CPU core to

run both normal world software and secure

world software. Figure 3 shows an abstract

model of the Security Extensions. Switch-

ing between the two security worlds is

managed by the monitor, a process that

runs in the secure world. The monitor pro-

cess can be entered by a number of trig-

gers, either programmatically (by execut-

ing a special instruction) or by a number of hardware triggers such as interrupts.

2.2.2 Software and TrustZone

ARM does not directly provide any software to execute in the secure world. Developers

of systems based on ARM IP either have to develop their own solutions or can choose

to use existing secure micro kernels like MobiCore from Trustonic10. Trustonic has re-

cently certified that its secure µ-kernel implementation meets the Global Platform Trusted

Execution Environment specifications11,12.

There are also efforts to create open source secure µ-kernels that use the capabilities of

TrustZone. Especially worthwhile are the efforts of IAIK (part of the TU Graz). In

[Win08] they propose a framework for secure applications on top of TrustZone by exe-

cuting a modified Linux kernel in the secure world. They also propose an open source

development environment for TrustZone [WWPT12] and their own µ-kernel on top of a

cheap development board with a Samsung SoC [Win12].

10http://www.trustonic.com/about-us/who-we-are/
11http://globalplatform.org/specificationsdevice.asp
12http://www.trustonic.com/news/release/trustonic-is-first-to-qualify-a-globalplatform-compliant-tee/en

25

2.2.3 TrustZone and TEE requirements

The list below revisits the requirements for a TEE from section 2 and examines how Trust-

Zone meets these requirements and where additional effort by SoC designers is required:

• Isolated Execution – the ARM Security Extensions allow separation of a CPU core

into a secure and a none secure world. That in itself is insufficient to provide iso-

lated execution; a secure µ-kernel that supports isolated execution and a memory

management unit in the SoC that supports memory protection are also required.

• Secure Storage – TrustZone does not include any means for secure storage. Adding

something like a Secure Element or a TPM to the SoC design can address this.

• Remote Attestation – TrustZone does not provide remote attestation capabilities.

This requirement can be fulfilled by introducing a Mobile Trusted Module (MTM)

[EK07], implemented in hardware (SE/TPM) or in software (in the secure µ-kernel).

• Secure Provisioning – Again, this is not explicitly specified as a part of TrustZone,

but would most likely be implemented in the secure world µ-kernel.

• Trusted Path – Establishing a trusted path is addressed explicitly in TrustZone.

In section 3.2 of [ARM09] ARM explains how the bridge between the peripheral

bus and the system bus can be used to secure interaction with peripherals like a

keyboard. In the example system design in the same document ARM also makes

suggestions how the same can be achieved for the display.

3 Related work

Much of the research into trusted execution focuses on aspects of TPMs and cryptographic

means to support trusted execution (e.g. attestation). Specific references are not provided

as it is easy to find entries into the large body of work around this topic.

Section 2 already references the work by Vasudevan et al. In addition to providing a good

definition for a TEE, they argue that TEE facilities are mostly not available to applica-

tion developers for various reasons, and give recommendations on how to improve this

situation. Zhou et al. [ZGNM12] outline an approach for establishing a trusted I/O path

between the user and an application on commodity x86 hardware by proposing modifica-

tions to the system’s I/O architecture.

Finally, there are two implementations of authentication tokens that mimic the behaviour

of a PKI-enabled smart card inside a TEE. Brasser et al. [BBFS12] demonstrate a token

running on the user’s PC on top of Intel TXT. Tamrakar et al. [TEL+11] take a different

approach and emulate a smart card on a smart phone that can interact with a PC as if it

were a real smart card.

26

4 Models for secure user interaction using TEEs

In section 1 we introduced an abstract model for user interaction in classic two-factor au-

thentication (Figure 1), which shows the clear, physical, separation between the trusted

and the untrusted environment. In this section we construct similar models based on Intel

IPT and ARM TrustZone as TEEs. The models clearly illustrate how IPT and TrustZone

differ from the classic approach and also highlight the common issue shared by any ap-

proach using a TEE: how to convince the user that they are interacting with a TEE. Note

that we do not address securing communication between a TEE and a smart card; existing

secure channel solutions provide sufficient means to achieve this.

Virtual Disp. #1 Virtual Disp. #2

CPU #1

User input

CPU #2

Driver SW

Display

merge

Trusted

Untrusted

Mixed

Virt. Display #1 Virt. Display #2

CPUVirtual CPU #1 Virtual CPU #2

User input

Display

*
*
merge or
switch

Physical
Boundary

(a) Intel IPT (b) ARM TrustZone

User User

Figure 4: Models for user interaction

4.1 Intel IPT

Based on the features Intel markets under the IPT umbrella (see section 2.1) we have

constructed the model shown in Figure 4a. The model shows the trusted environment in

gray, the untrusted environment (i.e. the normal OS) in white and components that are in

a sense part of both worlds in interleaved gray and white.

The model clearly shows the weakest link in the chain when using IPT: user input does not

flow through a trusted path. This is best illustrated by how Intel implements its Protected

Transaction Display feature. For PIN entry, the software running in the trusted environ-

ment randomises the layout of the PIN entry pad. This is done to prevent applications

running in the regular operating system from recording mouse clicks to steal the PIN.

The display at the top of the model is shaded to indicate that it contains content from both

27

the trusted as well as the untrusted environment. We assume that merging of secure and

non-secure elements on the display takes place under supervision of the secure environ-

ment (although this is not explicitly stated in the available Intel documentation).

4.2 ARM TrustZone

Figure 4b shows a similar model for ARM TrustZone. Because ARM TrustZone is a set

of building blocks and not a stand-alone technology, we have made assumptions (reflect-

ing the most desirable situation that can be created using TrustZone) about the specific

configuration, namely

• there is a trusted path to the display, e.g. as suggested in section 3.2 of [ARM09];

• all user input goes through a TrustZone-aware peripheral bus;

• there is a Memory Management Unit (MMU) that supports protected memory sepa-

ration between the secure and normal world.

Under these assumptions the model shows that a fully trusted path can be created all the

way from user input to output on the display. The model reflects that there may be multiple

implementation options for a trusted display; the display may show either content exclu-

sively from the secure world or the normal world (indicated by “switch” in the model), or

it may show a mix of the two just like Intel IPT (indicated by “merge” in the model).

4.3 Local attestation

Trusted

Untrusted

Mixed

Trusted
Execution
Environment

Untrusted
System

Display

Input devices

Local user

Network

Remote attestation

L
o
c
a
l
a
tt
e
s
ta
ti
o
n

Remote
entity

Figure 5: Local versus remote attestation

The models highlight that IPT and Trust-

Zone share a common issue: the dis-

play is used for communication by both

the trusted and the untrusted environment.

This makes it hard for users to ascertain

whether they are dealing with a trusted ap-

plication or not. In fact, all trusted exe-

cution environments that allow direct user

interaction have this problem.

To remedy this situation the trusted envi-

ronment will need to provide some form of

proof to the user that the data displayed be-

longs to the TEE and can be trusted. Sec-

tion 2 mentions remote attestation (prov-

ing to remote parties they are dealing with a genuine application and TEE). In keeping

with this naming we will call proving trustability to the local user local attestation. Figure

5 shows the relation between local and remote attestation.

28

There are a number of approaches to implementing local attestation. One approach is to

set the colour of the title bar of application windows such that all the windows belonging

to a single application have the same colour (this approach is taken by Qubes OS13). The

colour is set by a secure layer of the OS. This approach, however, does not stop malicious

applications from spawning windows with content similar to a trusted application. Another

approach is personalisation of the trusted environment with something specific to the user

(e.g. a picture of their family). This personal item is then shown every time the TEE uses

the display. The problem with this approach is that it is vulnerable to phishing. The user

can, for instance, be tricked into thinking they are reconfiguring their trusted environment

and unwittingly submit their personal item to a malicious application. There are also

proposals for using a separate trusted device that the user can rely on to perform local

attestation of a TEE (e.g. [Toe09, MPSvD07]). Finally, a truly convincing solution is using

a hardware indicator on the device that shows the status of the TEE. An example could be

an LED that only lights up when the TEE is active. Texas Instruments has submitted a

patent application for this [CD02]. Note that this only works well if the entire display is

controlled by the TEE.

Neither IPT nor TrustZone provide a clear way to perform local attestation. The examples

in Intel’s documentation seem to indicate that they hope to achieve this with consistent

branding; from a security perspective that has no use, though, since it is trivial for an

attacker to observe this branding and to falsify it. TrustZone itself does not address local

attestation, but online demonstration videos suggest that Trustonic’s MobiCore supports

personalisation.

5 Conclusions and future work

Classic two-factor authentication has very desirable security properties but also has prac-

tical problems. Users may forget their security token or may lack the infrastructure to use

their token (for instance when the token is a smart card that requires a reader). Zooming in

on smart cards we already outlined that their security properties are less favourable since

they commonly lack a secure display and trusted input device.

We wanted to examine if Trusted Execution Environments can provide secure user inter-

action similar to classic solutions. It would be particularly interesting if TEEs can also

be used to secure interaction with a smart card (given the less favourable properties of a

smart card when compared to classic security tokens). To illustrate this we introduced an

abstract model for user interaction. We described two TEE technologies (from Intel and

ARM) and applied the same abstract model to these two TEE technologies. When we look

at how the models for these TEEs compare to the classic model we can conclude that they

can approach the classic model up to a certain extent. They do, however, both have signif-

icant drawbacks when compared to the classic model. Intel IPT has a serious issue where

there is no trusted input path for the user to enter data. ARM TrustZone requires careful

selection of the right components by the system-on-a-chip designer that puts the parts of

13http://qubes-os.org/

29

the TEE together to guarantee that it can be trusted. An added disadvantage of TrustZone

is that - unlike IPT - it does not come with a dedicated software implementation, further

complicating the choices for designers of a TrustZone-based TEE. Finally, both technolo-

gies share a common issue, which is how to prove to the user that they are dealing with a

trusted application.

It is clear then that these technologies cannot provide a drop-in replacement for classic

two factor authentication solutions. This does not mean they do not have their benefits.

The convenience of a built-in two-factor authentication solution, such as e.g. Intel IPT can

offer, makes it much easier to deploy the solution, thus lowering the threshold for using

something that is more secure than the age-old username/password paradigm. Note that

a TEE is effectively an embedded smart card, a fact that is capitalised upon by Intel IPT

and by the two examples mentioned in section 3. Furthermore TEEs could be leveraged

to secure interaction with the user when using smart cards, thus improving the security

properties of smart cards when used as a two-factor authentication token. This would also

mean that no special secure card reader is required and the built-in smart card readers that

appear in more-and-more laptops, tablets and smart phones can be used.

Finally, we note that it proved hard to find detailed public documentation about the spe-

cific technologies we investigated, particularly about Intel IPT. Although we feel that this

did not impact the conclusions of our research unduly, this is worrisome from a security

perspective; public scrutiny is essential for a good understanding and acceptance of these

kinds of technologies.

Future work A consortium of partners14 is currently working on a privacy-friendly au-

thentication technology implemented on smart cards called IRMA15. One of the open is-

sues in the project is secure user interaction (both for showing and confirming transaction

details and for secure PIN entry). We would like to investigate if a TEE can help solve this

issue, which motivated the current paper.

Another question for future research concerns the problem described in Section 4.3: what

are alternatives for the personalisation approach that are less likely to be phished?

Finally, it would be worthwhile to investigate and compare the size of the Trusted Com-

puting Base (TCB) for IPT and TrustZone-based TEEs, as their security to a large extent

depends on the size of the TCB.

References

[ARM09] ARM Ltd. ARM Security Technology - Building a Secure System using TrustZone
Technology, 2009.

[BBFS12] F.F. Brasser, S. Bugiel, A. Filyanov, and A. Sadeghi. Softer Smartcards - Usable Cryp-
tographic Tokens with Secure Execution. In Financial Cryptography and Data Secu-
rity, vol. 7397 of LNCS, pp 329–343. Springer, 2012.

14TNO (http://www.tno.nl), SURFnet (http://www.surfnet.nl) and SIDN (http://www.sidn.nl)
15https://www.irmacard.org/

30

[BL07] E. Brickell and J. Li. Enhanced Privacy ID: A Direct Anonymous Attestation Scheme
with Enhanced Revocation Capabilities. IEEE Transactions On Dependable And Se-
cure Computing, 9(3):21–30, 2007.

[Car12] P. Carbin. Intel Identity Protection Technology with PKI (Intel IPT with PKI) Tech-
nology Overview, 2012.

[CD02] B. Cornillault and F. Dahan. Secure Mode Indicator for Smart Phone or PDA, 2002.

[EK07] JE Ekberg and M. Kylänpäa. Mobile Trusted Module (MTM) - an introduction. Tech-
nical report, Nokia, 2007.

[Int12] Intel. Deeper Levels of Security with Intel Identity Protection Technology, 2012.

[MMPR11] D. M’Raihi, S. Machani, M. Pei, and J. Rydell. RFC 6238 - TOTP: Time-based One-
Time Password Algorithm, 2011.

[MPSvD07] J.M. McCune, A. Perrig, A. Seshadri, and L. van Doorn. Turtles all the way down:
Research challenges in user-based attestation. In Proceedings of HotSec. USENIX
Association, 2007.

[Smi11] N. Smith. Identity Protection Technology (presentation). In 2011 Kerberos Conference,
Cambridge, MA, 2011. Intel.

[TEL+11] S. Tamrakar, JE Ekberg, P. Laitinen, N Asokan, and T Aura. Can hand-held comput-
ers still be better smart cards? In INTRUST 2010, vol. 6802 of LNCS, pp 200–218.
Springer, 2011.

[Toe09] R. Toegl. Tagging the turtle: local attestation for kiosk computing. In Advances in
Information Security and Assurance, vol. 5576 of LNCS, pp 60–69. Springer, 2009.

[VOZ+12] A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and J.M. McCune. Trustworthy Exe-
cution on Mobile Devices: What security properties can my mobile platform give me?
In Trust and Trustworthy Computing, vol. 7344 of LNCS, pp 159–178. Springer, 2012.

[vRvD11] R.M. van Rijswijk and J. van Dijk. tiqr : a novel take on two-factor authentication. In
Proceedings of LISA ’11: 25th Large Installation System Administration Conference,
pp 81–97, Boston, MA, 2011. USENIX Association.

[Win08] J. Winter. Trusted computing building blocks for embedded linux-based ARM trust-
zone platforms. In Proceedings of the 3rd ACM workshop on Scalable trusted comput-
ing - STC ’08, pp 21–30. ACM Press, 2008.

[Win12] J. Winter. Experimenting with ARM TrustZone – Or: How I Met Friendly Piece of
Trusted Hardware. In 2012 IEEE 11th International Conference on Trust, Security and
Privacy in Computing and Communications, pp 1161–1166. IEEE, 2012.

[WL11] J. Walker and J. Li. Key Exchange with Anonymous Authentication Using DAA-
SIGMA Protocol. In INTRUST 2010, vol. 6802 of LNCS, pp 108–127. Springer, 2011.

[WWPT12] J. Winter, P. Wiegele, M. Pirker, and R. Toegl. A Flexible Software Development and
Emulation Framework for ARM TrustZone. In Trusted Systems, vol. 7222 of LNCS, pp
1–15. Springer, 2012.

[ZGNM12] Z. Zhou, V.D. Gligor, J. Newsome, and J.M. McCune. Building Verifiable Trusted Path
on Commodity x86 Computers. In 2012 IEEE Symposium on Security and Privacy, pp
616–630. IEEE, 2012.

31

