Domain-Specific Languages for
Wireless Sensor Networks

Daniel A. Sadilek

Humboldt-Universitit zu Berlin
Institute for Computer Science
Rudower Chaussee 25
12489 Berlin, Germany

sadilek @informatik.hu-berlin.de

Abstract: Programming wireless sensor networks is difficult. Using low-level langua-
ges like C or Assembler requires detailed knowledge about the hardware and its limi-
tations. The behavior of a sensor node has to be described in terms of memory addres-
ses, registers, and very basic data manipulation operations. Domain-specific languages
help to ease the programming. They raise the programming abstraction and, for instan-
ce, allow to describe a sensor node’s behavior in terms of current sensor values and
sensor value change events. By abstracting from low-level details, a domain-specific
language may even enable domain-experts to describe the behavior of a wireless sen-
sor network. The goal of my thesis is to develop and evaluate an approach for defining
domain-specific languages for wireless sensor networks and for simulating, compiling,
and executing programs formulated in these domain-specific languages.

1 Introduction and motivation

Wireless sensor networks (WSNSs) consist of resource-constrained microcontroller devi-
ces, called WSN nodes, that communicate wirelessly and are battery-powered. They have
sensors for, e.g., temperature, humidity, and acceleration and can detect environmental
phenomena in a distributed fashion.

Software development for WSNs, if done with low-level languages like C or Assembler,
is very difficult. It requires detailed knowledge of the very limited hardware; testing and
debugging programs on the sensor nodes is very expensive and difficult. To overcome
these problems, multiple programming languages have been proposed that are tailored
specifically to the requirements of WSNs (nesC [GLvB*03], for instance).

These programming languages are mainly targeting at computer scientists. But WSNs are
embedded in an environment and usually computer scientists are not experts for this en-
vironment and do not know what the sensor network should do exactly. Consider, for
example, a WSN that is deployed across a city and monitors ground acceleration to detect
earthquakes. A seismologist knows how an earthquake propagates and what kind of signal
processing of the acceleration measurements has to be performed to detect earthquakes.

237



But a typical seismologist does not know how to describe this knowledge with one of
the general-purpose programming languages for WSNs. Therefore, he usually explains his
knowledge to a programmer who creates the software.

If the seismologist—or domain expert, in general—had a programming language to des-
cribe his knowledge, there wouldn’t be the need to explain all the domain knowledge to
the computer scientist. Such a language is a domain-specific language (DSL). It is not tai-
lored to programming WSNs in general but to a specific application area. A DSL provides
the domain expert with terms and notations that match his cognitive space and intuition.
A seismologist with background in signal processing, for example, could use a stream-
oriented DSL that allows him to formulate an earthquake detection algorithm in terms of
streams that come out of stream sources, go through filters and then into sinks. For this
DSL, a graphical notation showing the stream flow will probably be appropriate.

In the following two sections, I state the dissertation problem and my approach. In Section
4, I present the results of my work to date. I discuss future work in Section 5.

2 Problem statement

The goal of my thesis is to develop and evaluate an approach for defining domain-specific
languages for wireless sensor networks and for simulating, compiling, and executing pro-
grams formulated in these domain-specific languages.

This goal can be divided into two sub-problems: (1) the prototyping and simulation of
DSLs and (2) the execution of these languages on resource-constrained WSN nodes.

An approach that solves both sub-problems has to provide!

e a way to define the abstract syntax of a DSL,

e a way to define a purpose-built concrete syntax of a DSL,

e a way to define the execution semantics of a DSL,

o the possibility to simulate DSL programs in the development environment, and

o the possibility to execute DSL programs on the WSN nodes.

Besides these functional requirements, it should be cheap to define and use a DSL. DSLs
have a narrow application domain when compared to general-purpose programming lan-
guages. If the definition of a DSL costs more than what can be saved by using it, develo-
ping the DSL does not pay off. Making DSLs cheap to define and use means to allow using
them not only in widespread application domains like database querying (SQL) but also for
small projects and very narrow application domains like earthquake early warning. Thus,
DSLs aren’t necessarily implemented by some big software vendor but by developers that
use the DSL to raise the abstraction and structure the program code of a project they are
working on.

! due to space given without justification

238



3 Related work and my approach

Metamodeling frameworks are a common tool to define DSLs. A metamodel defines the
abstract syntax of a DSL. On this basis, a purpose-built concrete syntax can be defi-
ned and a corresponding graphical editor for a DSL can be created [GMF07, LBM*01].
Furthermore, the execution semantics of a DSL can be defined and DSL programs can
be simulated [MFJ05, CESWO04]. Finally, code can be generated from DSL programs
[Tol04, LBMT01].

Normally, an interpreted description of the execution semantics is used to simulate DSL
programs in the development environment and some form of transformation or code ge-
neration is used to make DSL programs executable on the target platform. In the existing
approaches, this leads to redundancy if both simulation and execution on the target plat-
form are necessary. My approach avoids this redundancy and uses just one description of
the execution semantics for both purposes.

For this, I extend EMOF with classes for specifying the execution semantics of a DSL,
similar to the approaches of Kermeta [MFJ0S5] or the Mosaic Framework [CESWO04]. In
contrast to these approaches, I extend EMOF with operations that can be implemented
in a lambda-calculus based language to describe the execution semantics of a DSL. The
description of a DSL’s execution semantics can then be used in two ways. First, it can be
interpreted in the development environment and can be bound to a discrete-event simula-
tion kernel, which allows for simulating a WSN consisting of multiple nodes. Second, it
can be compiled for the target platform.

Knowledge how to compile lambda-calculus based languages to efficiently executable co-
de is available—for instance, for the Scheme programming language. My idea is to lever-
age this knowledge by compiling DSL programs to a form directly executable on WSN
nodes in two steps:

(1) A compiler translates the DSLs metamodel, its execution semantics and the DSL pro-
gram to Scheme. For this, it will be necessary to represent the object oriented structure
of the DSL in Scheme. Fortunately, knowledge how to efficiently and flexibly represent
object oriented programs in lambda-calculus based languages is also available in form of
the Common Lisp Object System. The metamodel classes will be compiled to classes of
a Scheme object system (that reflects EMOF’s capabilities). The execution semantics de-
scription is compiled to procedures in the object system and the DSL program itself is
compiled to initialization code that instantiates the compiled classes.

(2) The resulting Scheme program could be compiled with a standard Scheme compiler.
However, deployment of large binary programs costs much of the node’s scarce energy and
WSN nodes typically don’t have memory protection or preemptive multitasking. Therefo-
re, it will be necessary to develop a special compiler that is geared towards WSN nodes
and compiles DSL programs to bytecode, which is small and which can be executed safe-
ly in a virtual machine on the WSN node. Applying existing optimization techniques for
Scheme compilation can help to minimize the size of the bytecode further.

239



4 Results so far

First, I analyzed the integration of WSNs into disaster management information systems
and identified the need to provide experts of the domain disaster management with DSLs
[STWO6].

Based on Eclipse EMF as metamodeling framework, I implemented a first version of my
approach [Sad07c, Sad07b] in which EMF and Scheme were not yet integrated as tightly
as presented in this paper: the DSL program in the Scheme representation was not object-
oriented and the first compilation step not a generic one. However, this first prototype
successfully demonstrated the possibility to combine EMF and Scheme. As an example
usage, 1 defined a stream-oriented DSL for the description of earthquake-detection al-
gorithms. The prototype already contains a discrete-event simulation kernel that allows
to simulate the stream-oriented DSL in the development environment. I used an existing
Scheme to C compiler to make the stream-oriented DSL executable on a Wifi-Router (that
had significantly more resources than the WSN nodes I am actually targeting at).

For the compilation for WSN nodes, I developed a mathematical model for optimizing the
energy usage of WSN nodes having a virtual machine that can be extended with native
code [Sad07a]. The model formalizes the energy trade-off between slow but small byte-
code and fast but big native code. It can be used to decide where the boundary between
bytecode and native code should lie and thus allows energy-aware compilation.

5 Future work

Currently, I am working on a specification of the virtual machine as an Abstract State Ma-
chine. The main task here is to define its instruction set. It should be efficiently executable
and should allow for concise bytecode. The specification will serve as an unambiguous
documentation of the virtual machine, as a reference for a native implementation, and as a
basis for testing the compiler for the second compilation step.

Another task is to implement this compiler. Here the following questions arise: Is a ge-
neric compiler actually possible? Are extensions of the Scheme programming language
necessary? Are extension points for the compiler necessary to support different DSLs? If
yes, how do they look like?

Later, I will implement the virtual machine. Here, one problem will be providing automatic
memory management for the WSN nodes because the instruction set will probably rely on
automatic memory management.

Finally, I will evaluate my approach. On the one hand, I will measure—for a simple
application—the runtime overhead that is introduced by my approach compared to a native
C implementation in terms of processing time and energy consumption. On the other hand,
more DSLs will be necessary to evaluate the broader applicability of my approach. Up to
now, I use earthquake detection as a scenario and a stream-oriented DSL as an example
DSL. Other scenarios like a chemical plant in which chemicals have to be monitored or

240



fire monitoring in a forrest give rise to other example DSLs.

A future task, which may be beyond my dissertation, will be to extend the compiler so
that it can generate native code for selected code parts and to extend the simulation with
energy estimations. This will be the basis for implementing energy-aware compilation.

Literatur

[CESW04]

T. Clark, A. Evans, P. Sammut und J. Willans. Applied metamodelling: A foundation
for language driven development. www . xact ium. com, 2004.

[GLvBT03] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer und David Cul-

[GMFO07]

[LBMT01]

[MFJO05]

[Sad07a]

[Sad07b]

[Sad07¢c]

[STWO06]

[Tol04]

ler. The nesC language: A holistic approach to networked embedded systems. In PLDI
’03, Seiten 1-11, New York, NY, USA, 2003. ACM Press.

The Eclipse Foundation, http://www.eclipse.org/gmf/. Eclipse Graphical
Modeling Framework (GMF), May 2007.

Akos Lédeczi, Arpad Bakay, Miklés Mardti, Péter Volgyesi, Greg Nordstrom, Jona-
than Sprinkle und Géabor Karsai. Composing Domain-Specific Design Environments.
Computer, 34(11):44-51, 2001.

Pierre-Alain Muller, Franck Fleurey und Jean-Marc Jézéquel. Weaving Executabili-
ty into Object-Oriented Meta-Languages. In MoDELS ’05, Seiten 264-278, Berlin,
Germany, October 2005. Springer Verlag.

Daniel A. Sadilek. Energy-aware compilation for Wireless Sensor Networks. In Mid-
Sens ’07: Proceedings of the International Workshop on Middleware for Sensor Net-
works, Newport Beach, USA, Nov 2007. ACM Press.

Daniel A. Sadilek. Prototyping and Simulating Domain-Specific Languages for Wire-
less Sensor Networks. Informatikbericht 217, Humboldt-Universitit zu Berlin, Berlin,
Germany, Nov 2007.

Daniel A. Sadilek. Prototyping Domain-Specific Languages for Wireless Sensor Net-
works. In ATEM 07: 4th International Workshop on Software Language Engineering,
October 2007.

Daniel Sadilek, Falko Theisselmann und Guido Wachsmuth. Challenges for Model-
Driven Development of Self-Organising Disaster Management Information Systems.
In IRTGW’06: Proceedings of the International Research Training Groups Workshop,
Dagstuhl, Germany, Jgg. 3, Seiten 24-26, 2006.

Juha-Pekka Tolvanen. MetaEdit+: domain-specific modeling for full code generation

demonstrated [GPCE]. In OOPSLA 04, Seiten 39-40, New York, NY, USA, 2004.
ACM.

241



