Optimising Test Execution Times in Test Suite Generation

Tilo Miicke and Michaela Huhn
{muecke, huhn} @ips.cs.tu-bs.de

Abstract: In the last decade, enormous progress has been made in generating test
cases for coverage criteria automatically via model checking. However, many ap-
proaches suffer from generating large test suites with long test execution times.

In recent work, we developed a method to generate test suites from state-based
design models with the shortest test execution time satisfying a given set of coverage
criteria. We were able to show that valuable improvements can be achieved. But
space complexity of generating the fastest test suite turned out to be too high; thus our
approach was limited to small models.

Alternatively, a model checker can be called several times, each run generating a
single fest case. Thereby, the space complexity problem is solved. To build a test suite
with minimised execution time, optimisations have to be applied afterwards. Here we
present and compare several such algorithms to optimise test suites with respect to
execution time.

1 Introduction

To reduce the costs of software testing, automation is applied more and more. Automation
of the test execution is a straight forward idea and is utilised in most of todays software
engineering projects. Automated test case generation, though, needs a formal description
of the properties of the software, a metric for test quality and a method to generate the test
cases. Many of these methods, generating tests randomly as well as driven by a model
checker, suffer from generating huge test suites with long test execution times. To over-
come this problem, we developed a method to generate time optimal test suites [MHO04]
for certain coverage criteria via model checking. Unfortunately, our method suffers from
space complexity problems caused by instrumenting the model for test case generation.
Thus the approach is limited to models some magnitudes smaller than those which could
be handled if model checking is employed for verification. However, experiments pro-
vided us with the information that optimal test suites tend to consist of only a few but long
test cases.

Here we present an alternative approach where we split the generation of optimised test
suites into a generation phase and an optimisation phase. In the first phase, a test suite
larger than necessary to achieve a given coverage criterion is created, e.g. by querying
a model checker. In the optimisation phase a minimal set cover algorithm is employed
to minimise the test suite but keeping the coverage. In the following we will discuss
and compare several variants to implement both phases. Preliminary results on randomly
generated models are promising.
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2 Test Case Generation

We reconsider the work of [HLSCO1] who generate single traces (test cases) for each
partial coverage ' contributing to a given coverage criterion and don’t allow resets within
a trace. The number of partial coverages (§pc) gives the number of situations (e.g. states,
transitions) in a model contributing to a coverage criterion. The model checker searches
for a trace for a particular partial coverage, which is used as a test case. The time which is
needed to execute the test case according to the timing information within the model ? is
called test execution time.

In general, some partial coverages will be achieved more than once by this approach (i.e.
several states are covered by more than one test case) and it is reasonable to extend already
generated test cases by searching from the last state of that test case for additional cover-
age. Thereby we obtain a larger set of test cases which achieves many partial coverages
multiple times. By enlarging the test suite, test execution time is increased. However, if
we apply a minimal set cover algorithm for optimisation to a larger test suite, in general,
it will contain more subsets satisfying the coverage criterion, thus optimisation algorithms
may find a better candidate, i.e., a test suite with shorter overall execution time.

Three functions are needed to generate the test suite:
generate : Models x (Traces U {e}) x {0..4pc} — Traces U {e}

This function generates a test case for a given model e.g. by using a model checker. A
trace may be given which serves as a beginning of the new extended trace for a given
partial coverage (3rd parameter). How to use a model checker to generate such traces is
discussed e.g. in [RHO1]. If the partial coverage cannot be achieved, ¢ is returned.

For each test case tc returned by the model checker, two additional informations are stored:
the execution time for the test case ¢ 4. (tc) and the set of partial coverages PC/(tc) which
is achieved by executing the test case.

search : Model x N — o(Traces)

search generates a large set of test cases for a given model. As a second parameter, it takes
the number of partial coverages which have to be achieved. It uses the function generate.
Possible implementations of search are discussed in section 3.

minsetcover : p(Traces) x R — o(Traces)

minsetcover generates a subset of test cases, which satisfies the same partial coverages but
has minimised execution time. To calculate the execution time for a complete test suite,
the reset time ¢,.s.+ Of the system has to be added after each test case. Since minsetcover
is NP-complete [GJ79], a heuristic algorithm is needed. Several possibilities are discussed
in section 4.

The complete test suite is calculated by minsetcover(search(model, §pc), treset ).

VA partial coverage describes one situation in the model where the coverage criterion applies and thus has to
be covered by a test case. Le., if state coverage shall be achieved, a partial coverage (test case) for each reachable
state is required.

2j.e., we consider timed models
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3 Search Strategies

A search strategy uses the generate function to generate a set of test cases. The naive
search strategy generates a test case for each partial coverage:

Sfunction searchl(model, $pc)
testsuite=();
fori=1 to ipc do
testcase=generate(model, ¢, i);
if (testcasee) then testsuite = testsuite U {testcase};
od;
return testsuite;

3.1 Depth 2 Search

Depth 2 search shows, how to enlength test cases by adding partial coverages. A test case
generated by the naive search strategy is enlengthened by a trace for each partial coverage:

Sfunction search2(model, $pc)
testsuite=searchl(model, fipc); addition=();
foreach testcase € testsuite do
fori=1 to gpc do
enlengthenedTestcase=generate(model, testcase, i),
if (enlengthenedTestcasee) then addition=additionJ{enlengthenedTestcase};
od;
od;

return testsuite U addition;

3.2 Heuristic Search

The heuristic search function enlengthens only the best test cases for a partial coverage
which has been achieved rarely:

function searchH(model, pc)
testsuite=searchl(model, fpc);
fori=1 to comp - ipc do
testcase=getBestTestcase(testsuite);
pc=getWorstPartialCoverage(testsuite);
enlengthenedTestcase=generate(model, testcase, pc);
if (enlengthenedTestcase# €) then testsuite=testsuite U {enlengthenedTestcase};
od;
return testsuite;

The function getBestTestcase returns the test case with the maximal value for
|PC(tc)|/(tewec(tc) + treser) Which has not been enlengthened in all possible ways. The
function get WorstPartialCoverage returns the partial coverage which has been achieved
least often in the test suite and in particular not in the chosen testcase. comp is a parameter
to control the heuristic search. In our experiments comp = 10 serves as a value for the
amount of enlengthened test cases in proportion to the original ones.
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4 Minimal Set Cover Algorithms

A minimal set cover algorithm generates a small® subset from a set of sets, such that the
union of sets in the small subset equals the union of the sets in the original set. Minimal
set cover algorithms can be used to reduce the size of test suites by searching for a subset
of test cases which satisfy the same partial coverages but have a shorter execution time.

4.1 Simple Greedy Algorithm

To apply a greedy algorithm on a minimal set cover problem, the usual approach [OPV95]
has to be complemented, i.e., we start with the full test suite and try to eliminate test cases
but keep the same coverage. The function entry is used to determine the order, in which
the test cases are eliminated. For the most simple type of a greedy algorithm, we use the
entry function with entry(testsuite, ... 4, ...) = ith test case in test suite.

function greedy(testsuite,t eset)
reducedlestsuite=testsuite;
Sori=1 1o |testsuite| do
testcase=entry(testsuite, reducedTestsuite, i,t cset);
if (|testsuite. PC|==|(reducedTestsuite\testcase).PC)|)
then reducedTestsuite=reducedTestsuite\ {testcase};
od;

4.2 Bidirectional Greedy Algorithm

The bidirectional greedy algorithm (compare [OPV95]) uses the same entry function but
is applied to the test suite twice running in both directions.

function greedyBi(testsuite,t ¢set)
testsuite=greedy(testsuite);
reducedTestsuite=testsuite;
Sor i=|testsuite| to 1 do
testcase=entry(testsuite, reducedTestsuite, i, t eset);
if (|testsuite. PC|==|(reducedTestsuite\testcase).PC)|)
then reducedTestsuite=reducedTestsuite\ {testcase};
od;

4.3 Sorted Greedy Algorithm

For further improvement of the test suite, the entry function can be modified such that
the test cases are sorted by their quality, weakest test case returned first. Therefore, the
getBestTestcase function from the heuristic search can be reused.

3 As stated in section 2, calculating a minimal set is NP-complete, thus heuristics are used in practical appli-
cations.
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execution time  (test case amount) || Naive Search | Depth-2-Search | Heuristic Search

Without Minimisation 104.2  (100.0) | 9817.2  (9000.0) | 1716.4  (1000.0)
Simple Greedy Algorithm 68.5 (65.3) 68.5 (65.3) 68.5 (65.3)
BiDirectional Greedy Algorithm 51.5 (48.9) 51.5 (48.9) 51.5 (48.9)
Sorted Greedy Algorithm 52.6 (49.9) 51.6 (48.9) 5.7 4.9)
Force Directed Algorithm 51.5 (48.9) 27.1 (25.1) 5.5 (5.1)

Table 1: Empirical Results of Test Execution Time Optimisation (Average of 10 Tests)

4.4 Force Directed Algorithm

This algorithm has been derived from the force directed scheduling algorithm [PK89].
Unlike the other greedy algorithms, the order in which the test cases can be deleted is not
fixed, but it depends on which test cases are already deleted.

For the force directed algorithm, we use a new function
timesCovered : {1..4pc} x Testsuites — N

which calculates by how many test cases of a test suite a partial coverage is satisfied.

The entry function is now implemented to return the test case with the lowest quality
according to

fpc 1 ;
Z timesCovered(i,reduced Testsuite)—1 te PC(tC)
i=1 0 : else

quality(tc)

temec(tc) + treset

The quality of a test case is described as fraction of the assets of the test case as the
numerator and the time needed to execute the test case and reset as a denominator. The
assets are accumulated from the assets achieved in dependence of the partial coverages. If
a partial coverage is not achieved, its asset is zero. If it is achieved, the asset depends on
how many other test cases do also satisfy this partial coverage. If it is not achieved by any
other criterion, its asset is set infinity, which maximises its quality. The more frequent a
partial coverage is achieved, the smaller is the asset for satisfying it.

S Experiments

In order to compare the search- and minsetcover-algorithms, they have been applied to 10
randomly generated example statecharts with 100 states and 1000 transitions each. Each
transition is labeled with an after event, whose time parameter is distributed exponentially.
No guards or actions are added. Test suites satisfying state coverage are generated.

Our results show, that the ability of optimising test suites with a short execution time is
depending on a combination of search- and minsetcover-algorithms. Using a good search,
but a poor minsetcover-algorithm, we achieved no reduction compared to the minsetcover-
algorithm without a search. This is caused by the fact that the initial testcases of the depth-
2 and heuristic search are the test cases which are generated during naive search. Thus, all
greedy algorithms which are not changing the order in which the test cases are considered

484



do not benefit from the use of search-algorithms. With the best minsetcover-algorithm, we
were able to reduce the execution time to approx. 50%, only. Using a combination of a
good search and a good minsetcover-algorithm, we achieved a reduction to approx. 5%.

An application of the optimal generation method for this kind of example has only been
possible with up to 23 states on 4GB of memory running approx. 30 minutes. Calculating
each of the examples above has been possible with the use of 8MB of memory and a time
consumption of 0.5 till 45 seconds, depending on the search- and minsetcover-algorithms.

6 Conclusion

We investigated the potential of optimising automatically generated test suites for given
coverage criteria. We considered a combination of search algorithms that enlarge a test
suite by high potential candidates to achieve a better coverage and minimal set cover algo-
rithms to select a minimised test suite with short execution time. Experiments on randomly
generated models are promising.

As in [HLSCO1], the model checker is only used for generating single test cases and only
reachability is an issue. Thus in contrast to other approaches, instrumentation of the model
will not blow up the model in size.

First experiments on optimising test suites generated from real world models show that
for transition coverage test suites with nearly the same test execution time as our previous
approach [MHO04] can be achieved.
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