Heinrich C. Mayr, Stefanie Rinderle-MA, Stefan Strecker (Hrsg.): 40 Years EMISA
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2020 59

Enterprise Information Systems in Academia and Practice:
Lessons learned from a MBSE Project

Kai Adam! Judith Michael! Lukas Netz! Bernhard Rumpe,1 Simon Varga1

Abstract: The development of domain-specific information systems, especially web information
systems, takes a certain amount of time, needs intensive testing to ensure a certain quality and lacks
the consistency of front- and backend. Using model-based strategies for the creation of information
systems helps to overcome these problems by fastening the development process, facilitating testing
and ensuring consistency-by-construction. In practice, however, they are still rarely used. In this paper,
we show that model-based engineering is beneficial for the creation of an enterprise information
system and improves the quality of the resulting product. We present the basic functionalities of our
Generator for Enterprise Management (MontiGEM) and discuss identified problems and lessons
learned in a project in practice. The generator was developed simultaneously with and for an enterprise
management system. Our research shows that the use of generative methods and MBSE improves the
adaptability and reusability of parts of the application on the one hand but on the other hand, there are
still obstacles that slow down its broad application in practice.

Keywords: Agile Development - Data-Intensive Enterprise Information Systems - Domain-Specific
Modeling Languages - Generative Software Engineering - Model-Based Software Engineering -
MontiGEM - Web Information System Engineering

1 Introduction

Context. To effectively create an enterprise information system (EIS), investigating and
modeling the domain in focus is essential to create a usable and reliable system. Using models
decreases the gap between software abstractions on the problem level and its implementation.
In Model-based Software Engineering (MBSE) models play an important role. It supports
strong stakeholder involvement and the constructive generation or manual synthesis of code
from models is among the first steps of model-based development processes. Thus, one or
more modeling languages are the central notation and replace the programming language as
much as possible. For domain-specific needs, MBSE relies on the use of domain-specific
modeling languages (DSML) [V613] as a central notation. DSMLs can be developed to be
used for several purposes such as designing, programming and testing software systems or
for describing the behavior of a system or processes.

Motivation and Relevance. MBSE increases efficiency and effectiveness in software de-
velopment and its adoption in the software industry is foreseen to grow exponentially in

I RWTH Aachen University, Software Engineering, Germany {surname} @se-rwth.de

ClOC)

https://creativecommons.org/licenses/by-sa/4.0/
{surname}@se-rwth.de

60 Kai Adam, Judith Michael, Lukas Netz, Bernhard Rumpe, Simon Varga

the near future [BCW17]. Using MBSE approaches for web applications improves their
development as well [MCM14]. In order to impart knowledge about MBSE approaches,
more tools and experience with modeling languages as well as more successful examples
for practical application in EIS are needed.

Goals. In this paper, we discuss lessons learned and obstacles that slow down the broad
application of generative MBSE approaches for EIS in practice in order to identify starting
points for future research and improvements.

Approach and Main Results. To be able to discuss the lessons learned in detail, we introduce
the practical application of MBSE in an agile EIS development project. As part of a MBSE
project, we developed the Generator for Enterprise Management (MontiGEM) based on the
language workbench and code generation framework MontiCore [HR17]. The realization
was accompanied by strong stakeholder involvement processes: As usual in scrum, we
define the use cases together with future users. Interested future users were a part of the the
engineering process who provided feedback on implemented features. Thus, it was important
to consider and react to changes quickly. In [Ad18] we already presented our approach
for model-based generation of data-intensive EIS at a glance. This paper (1) presents an
improved version of (MontiGEM) and basic functions to handle different DSMLs and (2)
shows lessons learned and obstacles for using MBSE for creating EIS. With the help of a
generator, some problems, such as data inconsistency on frontend (FE) and backend (BE),
can be avoided. Nevertheless, we state additional improvements for the ,,ease of use* for
engineers.

Outline. The paper is structured as follows: Section 2 presents our approach for MBSE of
EIS and the generator MontiGEM. In section 3, we discuss advantages and disadvantages
of our approach as well as lessons learned and obstacles in the practical realization in a
software engineering (SE) project. Section 4 discusses related work in comparison to our
approach and the state-of-the-art of MBSE for web-EIS. The last section reviews the current
progress and highlights further goals and next steps for our approach.

2 Model-based Generation of EIS with MontiGEM

With MontiGEM it is possible to generate large parts of data centric business applications:
The datastructure and database communication, functions, access control, and the graphical
user interfaces (GUIs). The generator MontiGEM uses different kinds of models as input and
uses them as the base for code generation of the BE and FE in different target languages. The
internal architecture of the generator includes three main processes: read, transformation
and generation. A model loader loads all input models and handles their transformation
in an internal accessible structure, the abstract syntax tree (AST), by using parsers and a
library of data structures and functions. The central part of MontiGEM transforms several
input ASTs to output ASTs. The template engine processes each output AST together with
standardized as well as project-specific templates, which describe the concrete shape of the

EIS in academia and practice 61

resulting artifacts, and produces as an output the code files for BE and FE. The components
model loader and template engine are generated with MontiCore2.

CD4A (class diagram for analysis [Ob17]) is used, to describe the basic domain model (data
structure). represent all the classes generated out of the one given Classes.cd,
see fig. 1, 2 and 3. Each of these classes are used for a specific task, e.g., the database
communication done with hibernate or network transportation with a REST infrastructure.
This domain model can be written by domain experts.

* @ 1 1
gl > > Zet.cd > Classescd | << Valid.ocl
based on based on restricts

GUI Model (GuiDSL) Aggregate Model (CD) Dataclasses Model (CD) Validator (OCL)

Fig. 1: Model files with their resp. number of occurrences (*: any number, 1: exactly one)

Based on the domain class diagram, an OCL [Mal7; Ob14] model is used to restrict the
attributes of defined classes to describe valid objects (yellow boxes|). Resulting validators
need different levels of detail, especially FE and BE have distinct demands. Error messages
or even specific expressions can be used to adapt objects to the exact behavior required.
Through the generation process both, the validators on the FE and BE, are consistent and
thus check for the same validity.

Aggregate models (|blue boxes) summarize attributes of specified domain classes and/or
calculated values to limit the view to the data needed in the FE. For each dataclass multiple
constellations of aggregates are viable to use. The models and thus the generated code
have little information about the logic with which the aggregate object is generated, so a
considerable part of it currently has to be written by hand.

Based on the previous described DSMLs, the GuiDSL is used to create views for the FE
(GUIs) and fill them with the corresponding data defined by aggregates. For each page there
is an affiliated model. This model separation improves the configurability and the separation
of concerns. The model describes the usage of the aggregate and generates communication
and validity checking. The model is the base for the logic component, which handles the
data collection and user interaction, and a HTML view (| red boxes).

Boxes with a hwc addition indicate, that handwritten parts are necessary to work properly.
[Gr15] describes the used integration of handwritten and generated object-oriented code.
A constant regeneration based on the given models is possible. We expect to be able to
(nearly) fully generated these missing parts in the future by improving the DSMLs.

A command infrastructure and generated commands for each domain and aggregate class
are used to handle the entire communication between BE and FE. This is based on the
command processor pattern [BHS07]. The aggregates selected in the GuiDSL are requested
and can be written back by commands on the FE. Through this mechanism data consistency
is ensured.

2http://www.monticore.de/

62 Kai Adam, Judith Michael, Lukas Netz, Bernhard Rumpe, Simon Varga

Frontend Backend

hwe
Command»
«DTO» i «DTO» «DTOLoader»
zenTo | S| ZeLgelAl |Eh gonrg [=——) 200701 oader
unpack | Zet_getByld pack load
l uses l includes l uses
«DTO» «C «DTO»
YpsDTO/ .l Yps_getAll - YpsDTO/ | € «Delacl == 0
YpsFulDTO | U"Pack | vps getByld | Pac YpsFullDTO rafo P ranspo P
i 7 luses handles
) 3 v
«Validator» «Command» Changﬁ? T - v
YpsValidator Yps_set<Attr> | «Builder» «DB-Table»

YpsBuilder Yps

uses !
v [Ctwg

«Validator»

YpsValidator

Fig. 2: Generation of BE files for the example class Yps based on the model files from Fig. 1

Frontend
(hwe).
d»
«component» ,:> «DTO» «oomman
G—] Zet_getAll/
IxComponent loads ZetDTO unpacks | Zet E;getById
2 : 9
© llncludes J uses
2 4 :
GUI shows S «DTO» «command»
- i YpsDTO/ K Yps_getAll/
— @ YpsFullDTO | U"PaSKS | yps getByld
vy = " :
% é (hwe)
N «form» R «Validator» «command»
IxForm checks YpsValidator Yps_set<Attr>

Fig. 3: Generation of FE files for the example class Yps based on the model files from Fig. 1

To sum up, MontiGEM provides us strong support in our practical development project,
where we have to consider and react to changes in the requirements quickly. All input models
are defined by UML/P [Rul1] inspired DSMLs.

3 Lessons learned in practice

To engineer EIS for research purposes strongly differs from software engineering in
industrial-strength projects: in most cases it is enough for academia to have a demonstrator
or prototype which is stable for one browser and one screen resolution, there is no need to
catch all user errors as oneself and the research team are the only users and performance
issues are only important in some cases, e.g. for data-intensive systems.

EIS in academia and practice 63

We developed and evolved MontiGEM in an industrial-strength project for RWTH Aachen
university and clearly noticed these differences. The following lessons we have learned
during the MBSE process lead to research gaps that should be addressed in the future.

The simultaneous development of the application and the generator itself is more time
consuming than to do that separately. Clearly, to develop a generator without a specific
use case is less effective, but to start a project with a basic generator for similar purposes
significantly facilitates the development process. If the development of the generator is
completed, the generation of similarly structured applications, e.g. Web-EIS which present
data in various ways, in addition with minimal handwritten code is well manageable. Setting
up a generator for the first time takes a while. Depending on the complexity of the project,
the time taken to configure the generator can consume the time gained from code generation.
Reusing a configured generator with prefabricated languages and generator components
mitigates this problem.

There are strong dependencies between models of different DSMLs. For example the
GUI model requires references to the aggregate model in order to display data. Typical IDEs
are not able to check these calls, therefore the developer has to ensure validity. This is highly
error prone and is only confirmed after a rebuild. Possible solutions are, e.g., composition
on model level based on the symbol table to create a consistent set of models in different
DSMLs.

There are strong dependencies of the project on the generator. Changes in the generator
may lead to inconsistencies in the GUI. It is possible that validators and handwritten
code does not completely fit into the generated files any more. One approach could be to
implement generator composition in order to describe more logic in related models and to
minimize the need for handwritten code.

Changes in the main data-classes model results in changes of the data-structure and
requires migration. As the main data-classes model is generating the database, changes in
the model have strong effects on it. If there already exists a running system with real data,
this results in regular migrations of the database and change or addition of data, e.g., if
required fields are added, existing fields are changed to be required or relations are changed.
For a system with only one database this might lead to additional work with manageable
time expenditure, but this time expenditure increases for large scale projects with several
databases including different data. It even increases more, if several different versions of
the EIS exists. In these cases it is important to develop strategies to (semi-)automate the
migration process, to ensure that no data is in an inconsistent state or lost (at least they
should be recoverable from a backup).

Model changes require manual test changes. Tests need to check the functionality in
different browsers and a large variety of screen resolutions. Changes in data-structure or
dummy data could lead to failed tests, e.g. check for a certain fixed result. With the goal to
support software engineers as much as possible, the generation of the test infrastructure is

64 Kai Adam, Judith Michael, Lukas Netz, Bernhard Rumpe, Simon Varga

an important aspect for time reduction. MBSE should and could improve that by automatic
generation of dummy data with all peripheral cases including tests for them.

It is a challenge to identify the generateable parts of a software project. A generator
is well suited to apply patterns and rules to a set of models. Thus we can generate many
lines of code from a few lines of a model. A more diverse code without common structure
requires further adjusted models, which in the worst case match the size of the generated
code. It is recommended to model the software project with these similarities in mind, and
to adjust with handwritten code. Project with high portions of algorithmic diversity (e.g.
SatSolvers) are unlikely to be efficiently generated.

To sum-up: The use of a generator only pays off if (a) a predefined and reusable generator
exists (small adaption), (b) the generator is adaptable, (c) language and generator components
are modular and (d) you use it for more than only one project (increase reuse).

4 Discussion and Related Work

Model-driven software engineering, model-driven architecture and MBSE are more and
more used in practice. There exist several surveys and case studies for its application
in industry [HRW11; Lil8; MDO08; Tol1] and the generation of specific parts such as
for automated test generation [Ar18]. Nevertheless, the maturity of tool environments is
critizised and is perceived as unsatisfactory for large-scale industrial adoption [MDO08].

There exist several approaches and tools for Model-Driven Web Engineering [MRV08] but
the paradigm shift from code-centric to generative approaches that has been expected in
industry for years is still to come [MKH18]. There are attempts to explain this phenomenon,
such as the impact of personality on the intention to adopt an MBSE method [MKH]18].
The findings in this paper in section 3 refer to improvements for ,.ease of use as intention
to adopt to MBSE approaches.

In comparison to the seven categories of web-based applications proposed by [GMO1]
our system generated with MontiGEM is mainly informational, interactive, and a basic
collaborative work environment. It is an informational EIS, which provides data view-
specific based on underlying domain data objects. It is interactive as the views and forms
provide the possibility to interact with (parts of) the domain data. Our EIS is a basic
collaborative work environment as several users can work on the data with a defined role
and right structure.

Following [Of02] the most important quality criteria for web application success from the
point of view of managers and practitioners are reliability, usability, security, availability,
scalability, maintainability and time-to- market. MontiGEM generates a reliable system
which ensures consistency-by-construction as much as possible, MBSE approaches improve
the usability for the developer, the maintainability is improved as well and time-to-market is
reduced for generative approaches.

EIS in academia and practice 65

5 Conclusion

Our lessons learned and obstacles show, that there are still several research gaps to work
on in future in academia and practice, to provide good tools and facilitate the engineering
process of developers in MBSE processes for EIS. Current trends on ICT technologies for
EIS face four big challenges [E116] for the next generation of EIS: (1) Data Value Chain
Management, (2) Context Awareness, (3) Interaction and Visualization and (4) Human
Learning. Using MBSE approaches strongly support (2) and (3).

In future, we will show the practical application of MontiGEM for other domains, e.g.
Cyber-Physical-Systems (CPS) with data from sensors, working stations or data from
workers in the Internet of Production.

The usage of a generator for complex enterprise applications offers benefits, but also includes
custom parts which are only usable in this specific case. A modular and configurable generator
is a necessary condition to be able to adapt and reuse the generator to more sophisticated
variants such as other coding languages or infrastructures. To further improve the generator
and reduce handwritten parts an own aggregate model language with expressions to describe
the logic to calculate/ get the values out of domain objects could be added. A workflow-
engine could be used to completely describe the process within the application (BE/FE),
the navigation and simplify the overview for programmers and domain experts.

References

[Ad18] Adam, K.; Netz, L.; Varga, S.; Michael, J.; Rumpe, B.; Heuser, P.; Letmathe, P.:
Model-Based Generation of Enterprise Information Systems. In: EMISA’18.
CEUR 2097, pp. 75-79, 2018.

[Arl8] Arcuri, A.: An experience report on applying software testing academic results
in industry: we need usable automated test generation. Empirical Software
Engineering 23/4, pp. 1959-1981, 2018.

[BCW17] Brambilla, M.; Cabot, J.; Wimmer, M.: Model-Driven Software Engineering
in Practice. Synthesis Lectures on SE 3/1, pp. 1-207, 2017.

[BHSO7] Buschmann, F.; Henney, K.; Schimdt, D.: Pattern-oriented Software Architec-
ture: on patterns and pattern language. John wiley & sons, 2007.

[E116] El Kadiri, S.; Grabot, B.; Thoben, K.-D.; Hribernik, K.; Emmanouilidis, C.;
von Cieminski, G.; Kiritsis, D.: Current trends on ICT technologies for
enterprise information systems. Computers in Industry 79/, pp. 14-33, 2016.

[GMO1] Ginige, A.; Murugesan, S.: Web engineering: An introduction. [IEEE Multime-
dia 8/1, pp. 14-18, 2001.

66 Kai Adam, Judith Michael, Lukas Netz, Bernhard Rumpe, Simon Varga

[Grl5]

[HR17]

[HRW11]

[Lil8]

[Mal7]

[MCM14]

[MDOS]

[MKH18]

[MRVO0g]

[Ob14]
[Ob17]
[0f02]
[Rull]

[Toll]

[Vo13]

Greifenberg, T.; Holldobler, K.; Kolassa, C.; Look, M.; Mir Seyed Nazari, P.;
Miiller, K.; Navarro Perez, A.; Plotnikov, D.; Reif3, D.; Roth, A.; Rumpe, B.;
Schindler, M.; Wortmann, A.: Integration of Handwritten and Generated Object-
Oriented Code. In: Model-Driven Engineering and Software Development.
Vol. 580. Comm. in Comp. and Inf. Science, Springer, pp. 112-132, 2015.
Holldobler, K.; Rumpe, B.: MontiCore 5 Language Workbench Edition 2017.
Shaker Verlag, 2017.

Hutchinson, J.; Rouncefield, M.; Whittle, J.: Model-driven engineering prac-
tices in industry. In: ICSE 2011. ACM, New York, N.Y., p. 633, 2011.
Liebel, G.; Marko, N.; Tichy, M.; Leitner, A.; Hansson, J.: Model-based
engineering in the embedded systems domain: an industrial survey on the
state-of-practice. Software & Systems Modeling 17/1, pp. 91-113, 2018.
Maoz, S.; Mehlan, F.; Ringert, J. O.; Rumpe, B.; von Wenckstern, M.: OCL
Framework to Verify Extra-Functional Properties in Component and Connector
Models. In: Proc. of MODELS 2017. Workshop EXE. CEUR 2019, 2017.
Martinez, Y.; Cachero, C.; Meli4, S.: Empirical study on the maintainability
of Web applications: Model-driven Engineering vs Code-centric. Empirical
Software Engineering 19/6, pp. 1887-1920, 2014.

Mohagheghi, P.; Dehlen, V.: Where Is the Proof? - A Review of Experiences
from Applying MDE in Industry. In: Model Driven Architecture: Foundations
and Applications. Springer Berlin Heidelberg, pp. 432-443, 2008.
Mikkonen, T.; Klamma, R.; Hernandez, J., eds.: Web Engineering. Springer
International Publishing, 2018.

Moreno, N.; Romero, J. R.; Vallecillo, A.: An Overview Of Model-Driven Web
Engineering and the Mda. In: Web Engineering: Modelling and Implementing
Web Applications. Springer London, pp. 353-382, 2008.

Object Management Group: Object Constraint Language, 2014, urL: https:
//www.omg.org/spec/0OCL/2.4/PDF.

Object Management Group: OMG Unified Modeling Language (OMG UML),
2017, urRL: https://www.omg.org/spec/UML/2.5.1/PDF.

Offutt, J.: Quality attributes of Web software applications. IEEE Software 19/2,
pp- 25-32, 2002.

Rumpe, B.: Modellierung mit UML. Springer Berlin, 2011.

Torchiano, M.; Tomassetti, F.; Ricca, F.; Tiso, A.; Reggio, G.: Preliminary
Findings from a Survey on the MD State of the Practice. In: Int. Symp. on
Empirical Software Engineering and Measurement. Pp. 372-375, 2011.

Volter, M.; Benz, S.; Dietrich, C.; Engelmann, B.; Helander, M.; Kats, L. C.L.;
Visser, E.; Wachsmuth, G.: DSL Engineering - Designing, Implementing and
Using Domain-Specific Languages. dslbook.org, 2013.

https://www.omg.org/spec/OCL/2.4/PDF
https://www.omg.org/spec/OCL/2.4/PDF
https://www.omg.org/spec/UML/2.5.1/PDF

