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Abstract: The Discriminative Generalized Hough Transform (DGHT) is a general
and robust automated object localization method, which has been shown to achieve
state-of-the-art success rates in different application areas like medical image analysis
and person localization. In this contribution the framework is enhanced by a novel fa-
cial landmark combination technique which is theoretically introduced and evaluated
for an eye localization task on a public database. The technique applies individu-
ally trained DGHT models for the localization of different facial landmarks, combines
the obtained Hough spaces into a 3D feature matrix and applies a specifically trained
higher-level DGHT model for the final localization based on the given features. In
addition to that, the framework is further improved by a task-specific multi-level ap-
proach which adjusts the zooming-in strategy with respect to relevant structures and
confusable objects. With the new system it was possible to increase the iris localiza-
tion rate from 96.6% to 97.9% on 3830 evaluation images. This result is promising,
since the variation of the head pose in the database is quite large and the applied error
measure considers the worst of a left and right eye localization attempt.

1 Introduction

Automatic landmark localization in face images is an important first step for various com-
puter vision applications like person recognition and tracking, gender classification or fa-
cial expression analysis. This underlines the relevance of this task, which has attracted
wide scientific interest in recent years. Especially for the eyes as the most important facial
landmarks, a large number of localization approaches have been proposed. Many of these
techniques have in common that they were specifically developed for the given task using
expert knowledge about the object’s positioning, appearance and individual adjustments.

Several eye localization approaches employ the Viola & Jones face detector [VJ04] in a
first step, which uses Haar-wavelets in a boosted cascade of classifiers. Although this
technique is a general object localization approach it requires additional shape constraints
to be successful on the task of eye localization [CC03]. Those constraints might be either
manually defined [KS10] or automatically learned [CCS04]. Frequently, the method of
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Viola & Jones is only used to localize a bounding box around the face in order to perform
a subsequent eye localization inside the box, using a specifically developed approach. In
this second localization level the given bounding box allows for a rough determination of
the eye positions [KHMOS] or at least an additional restriction of the search space [KS10].

A popular eye detection approach, sometimes applied in previously located bounding
boxes, is to search for circular structures, representing the pupil or the iris [TB11, DLCD04,
VGO08, NG12]. Despite the technical differences of these approaches, they all make use
of expert knowledge about the appearance of the target object and therefore cannot be
directly transferred to other localization tasks.

A general and well-known object localization method is the Generalized Hough Trans-
form (GHT) [Bal81]. This technique uses a voting procedure to transform an image into
a transformation parameter space, called Hough space, in order to determine the degree
of matching between a transformed shape model and the image content. An extension
of this approach are Hough Forests [GL09], which learn a direct mapping between the
appearance of image patches and the votes in the Hough-space. Hough Forests have al-
ready been used in different application scenarios like mouth localization for audio-visual
speech recognition [FGVGO09] or classification of facial expressions [FYNT12]. In both
cases, however, the eyes were localized by searching for circular structures by the method
of [VGO8].

The idea of splitting the target object into different parts is utilized in various object lo-
calization methods [Oka09, LLS08]. Furthermore, in [CCS04] a procedure for eye lo-
calization is presented, which detects 17 different facial features using the method of Vi-
ola & Jones and learns their relative positions in a geometric model.

The success of the GHT heavily depends on the applied shape models. Therefore, the
Discriminative Generalized Hough Transform (DGHT) [RBSO0S8, Rup13] extends the GHT
by a fully automated and general learning method for model generation. In [HRB'12]
the DGHT was successfully used for eye localization and in [HRBS12] improved results
for this task have been achieved by combining the localizations of both eyes with prior
knowledge about the expected eye distance vector. In this contribution, we present a novel
method for combining different landmarks in two hierarchical DGHT-based localization
levels. In the first level the standard DGHT technique is used to determine the localization
probabilities for different facial landmarks which are afterwards combined in a 3D feature
matrix. On these features the DGHT training approach (Section 2.3) is applied to train a 3D
DGHT localization model which learns the relative positioning of each of the landmarks
given in level one. In addition to that, a modified multi-level approach is introduced in this
work, which achieves an improved robustness by replacing the gradual reduction of the
search space in [HRBS12] with a direct zooming into the eye region (Section 2.2).

Both changes have been evaluated on the public PUT Face Database (Section 3) and led to
a significant improvement over the standard method (Section 3.3). The paper closes with
a discussion of the experimental results (Section 4) and a conclusion (Section 5).

28



2 Method
2.1 Discriminative Generalized Hough Transform

The Generalized Hough Transform (GHT) is a general method for object localization.
It is based on a geometric model which stores model points representing features of the
searched-for object in relation to a reference point. The GHT transforms an image space
into a model transformation parameter space, from which the optimal object transforma-
tion into the given image can be derived. Although, the transformation, considered in the
GHT, is in general not restricted, object localization can be based on translation parameters
only by determining the position with the highest degree of matching between the model
and the feature image. This restriction, used throughout this contribution, allows for quick
processing and works well if the model sufficiently represents the object’s variability.

A cell ¢; of the quantized parameter space, also called Hough space H, represents an
image position and reflects the degree of matching between model M and feature image
X, by the number of corresponding feature points e;, and model points m;. The Hough
space is generated by an efficient voting procedure and can be formalized by
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whereas d(ey,, m;) specifies the distance between the value of the feature and model point,
which has to be lower than a threshold 1. In case of using edge features, the values of the
feature and model points are usually given by the gradient direction ¢}, and model point
orientation ;. Thus, the distance is determined by d(ey, m;) = |¢or — @5

Since the result of equation (1) highly depends on the quality of the model, the DGHT
comprises an automatic training procedure to generate optimal models. This training pro-
cedure uses the Hough space, resulting from the explained voting procedure, to extract the
model point specific contributions f;(c;|X,,) which is the number of votes from model
point m; into the Hough cell ¢;. These model point specific votes are recombined into a
Maximum-Entropy distribution [Jay57] to ensure maximum objectivity:

exp (Zj Aj e fj(ci|Xn)>
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The introduced model point specific weights A = {1, Ag, ..., A}, which may be negative,
are optimized to reflect the importance of a model point for the correct localization and for
the distinction of similar objects. For further details on the DGHT method, we refer the
reader to [HRBS12].

Note that the DGHT can be used for 2D and 3D images. Although edge images are used
most of the time, other features may also be utilized.
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(b) Modified Multi-Level-Approach with 2 zoom levels

Figure 1: Comparison of the standard Multi-Level-Approach with the modified Multi-Level-
Approach

2.2 Modified Multi-Level-Approach

The Multi-Level-Approach (MLA) is a zoom-in strategy, in which the resolution is grad-
ually increased around the suspected target point. By decreasing the considered image
extract and increasing the resolution in each zoom level the visible structures range from
global and coarse to local but fine structures. Since the different DGHT models, applied
in the MLA, are specifically trained on the respective image extracts they learn relevant
and discriminative structures in each zoom level. Therefore, the MLA is a good trade-
off between keeping sufficient target object details and suppressing noise and confusing
objects.

The MLA presented in prior publications [RKL'11] doubled the resolution and halved
the size of the image extract in each zoom level, therefore keeping the number of pixel
constant. For the task of eye localization on the public PUT Face Database this procedure
was used with 6 zoom levels in [HRBS12] (Figure 1(a)).

It could be shown in [HRB*12], that the standard MLA procedure is prone to a confusion
of the eyes in zoom levels, where both eyes might be visible while important discriminat-
ing structures are missing. Consequently, the modified MLA uses a higher resolution in
the first zoom level in order to ensure a more accurate target localization than the standard
approach. This especially aims at a reliable distinction between both eyes. In the second
zoom level of the modified MLA the image extract is already restricted to a region contain-
ing only a single eye which excludes a confusion with the other eye. This image extract
already has the full resolution and is used for the final localization (Figure 1(b)).

30



3D feature
Baseline landmark specific X image
localization x!  feature images

1

M)

Edge image x?

) final
X, Hough space

Figure 2: Illustration of the process of landmark combination: According to the standard procedure
for landmark localization the image is transformed into a feature image (edge image). Subsequently,
the edge-based DGHT models M1, M3, M3 are utilized for single localization of both eyes (M1 and
M3) and the chin (M3 ). The thereby generated probability distributions X}, X2, X2 are combined
in a 3D feature image X,,. On this 3D feature image, a discriminatively trained 3D model M? is
applied for the final localization. Hence, M? combines the information about the probable position
of the individual facial landmarks related to the target landmark.

2.3 Landmark combination

The landmark combination occurs in two levels. In the first level, for each landmark [ spe-
cial DGHT models M, are trained by using the standard DGHT procedure (section 2.1)
and canny edge images [Can86] as features. By applying these models to new images,
individual probability distributions X! (see Equation (2)) of target localizations are gen-
erated. Since (i) with the distribution of a landmark (e.g. left eye), the position of another
landmark (e.g. right eye) can be estimated and (ii) the DGHT is neither restricted to edge
images nor to 2D images, these landmark specific distributions are combined in a new 3D
feature image X,, = {X},..., XL} for the next localization level. For a given set of N
training images, the corresponding 3D features X1, ..., Xy are used to train a higher-level
3D DGHT model M? in the second level utilizing the standard DGHT training approach
(section 2.1). This model captures the relative position of the landmarks to each other and
provides the final localization result.

The feature value of a point ey, in X' specifies the probability p;(ex|I,,) (calculated by
Equation (2)) of landmark [ being localized at position e for the given image I, and
model M. Thus, it represents the certainty of the underlying localizer in level one. This
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Figure 3: Illustration of the large head position variability contained in the PUT database.

important source of information should be directly incorporated into the GHT voting pro-
cedure of level two in order to increase the influence of areas with high localization relia-
bility. Therefore, the standard voting procedure (Equation (1)) is adapted to directly vote
with the feature value p;(e|I,,) instead of voting with the value 1. In addition to that, a
summation over the L landmarks has to be done in order to combine the results from the
different landmark localizations in level one. This leads to the following modified voting
procedure for the GHT in level two:

H(c;| Xy) Z Z Z {pl (ex|I,), ifc; :.ek —m, -

T verext vmpenst (O otherwise.

Note that the standard DGHT training approach (see section 2.1) is used for optimizing
the models of both described localization levels.

3 Experiments
3.1 Data

The experiments were conducted using the public PUT Face Database [KFS08] in train-
ing and evaluation, which includes 9971 images from 100 subjects. The high resolution
(2048 x 1536 pixels) color images were taken under controlled lighting conditions in front
of a uniform background. Since 30 facial landmarks are provided for each image in this
corpus it is very well suited for investigating the presented landmark combination tech-
nique. Despite of the neutral background, the corpus is challenging due to the strong
variability of head positions (see Figure 3).

As in [HRB*12, HRBS12], the 100 different subjects in the corpus were divided into
a training set, containing 60 subjects, and an evaluation set with the remaining 40 sub-
jects. For better comparability the evaluation corpus is identical to [HRBT12, HRBS12]
and includes 3830 images. The training was performed on 600 images which have been
randomly selected from the training set.
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Figure 4: System overview of modified multi-level approach with landmark combination.

3.2 Setup

In the modified MLA (Section 2.2), the resolution is reduced by a factor of eight in zoom
level O (see Figure 1(b)). Around the target point, localized in this level, an image extract
with original resolution and the size of one-eight of the complete image is taken for the
second and final localization step. The system works with Canny edge features [Can86]
and applies a standard DGHT training procedure for generating the specific GHT models
for the two localization levels. All described experiments have been performed using a 64
bit system with an Intel Xeon W3520 with 2.66 GHz and 24 GB RAM.

To further enhance the robustness of the modified MLA in zoom level 0, a combination of
three landmarks (both eyes and chin) is applied by the landmark combination procedure
described in Section 2.3: Using standard DGHT models, based on Canny edge features,
three probability distributions for the landmark locations are generated (see Section 2.3).
These distributions are combined into a 3D feature image X,,, ignoring values of less
than 0.01 in order to decrease the processing time and to reduce noise. With a specifi-
cally trained 3D DGHT model a robust target localization in zoom level 0 is performed
using the modified voting procedure (equation (3)) and the result is handed over to zoom
level 1. Figure 4 gives an overview of the system with the modified MLA and landmark
combination.

To determine the localization rate, the measurement explained in [JKFO01] is used, in which
the larger localization error of both eyes is normalized with the eye distance. An error of
less than 0.1 / 0.25 therefore corresponds to a localization result approximately located
within the iris / eye. Due to slightly inaccurate annotations, provided by the PUT Face
database, an error distance less than 0.1 is not meaningful since the inaccuracy would be
higher than the error distance.

3.3 Results

By using the modified MLA a success rate of 97.2% for a localization within in the iris
could be achieved on the evaluation corpus. This is an improvement of 0.6% compared
to the previously best published result and a gain of 2.2% to the published result obtained
with a standard method (Table 1). A good indicator for the localization robustness of zoom
level O of the MLA is given by the number of target points lying outside the optimal image
extract. In comparison to the standard MLA approach and a comparable image extract,
this number could be reduced from 130 to 50 by applying the described modifications.
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Table 1: Experimental results comparing different systems for different fault tolerances.
e<01|e<015|e<02]|e<0.25

Kasinski et al. [KS10] 94.0% - - _
Standard MLA with 6 zoom levels | 95.0% 95.4% 96.0% 96.5%
[HRB+12]

Standard MLA with Model interpo- | 96.6% 97.1% 97.6% 98.1%
lation [HRBS12]
Modified MLA with 2 zoom levels 97.2% 97.6% 98.0% 98.2%
Modified MLA with landmark com- | 97.9% 98.5% 98.9% 99.1%
bination

A further improvement of the localization robustness in zoom level 0 of the modified MLA
could be achieved by using the described landmark combination technique for three facial
landmarks. This measure reduced the number of target points lying outside the optimal
image extract to 20 and therefore improved the error rate to 97.9% for iris localization.
Considering a less restricted fault tolerance, a localization inside the eye was achieved in
99.1% (Table 1). The generated landmark localization models M are shown in Figure 5
(a) to (e). The model points are represented as lines to visualize their orientation while
the gray value illustrates their weight. Figure 5 (f) displays the 3D DGHT model of zoom
level 0. Here, the symbol of a model point indicates the corresponding landmark and the
gray value represents again the individual weight as obtained by the discriminative training
process.

4 Discussion

The significant improvement of the modified ML A can be mostly explained by a better dis-
crimination between both eyes. This is due to an improved localization robustness in zoom
level 0 which may be assigned to a better and more detailed DGHT model with a strong
focus on both eyes (e.g. see Figure 5(a)). Comparing the models of the standard and the
modified MLA, it is noticeable that the average number of model points has substantially
increased from 357 to 1807. This rise results from the higher resolution in the modified
MLA which leads to an increase of feature points and shape variation, compensated by a
larger number of model points.

It is interesting to note that only a few model points of a given localization model are
relevant for a single image. Therefore, the percentage of model points, voting for the
best Hough cell, is only 11% on average for the standard MLA. For the modified MLA,
however, this number is even smaller and amounts to only 5% which underlines the fact
that the overall size of the model results from the large variation over all images.

The higher number of feature and model points also explains an increase of the processing
time from about 600 ms for the standard MLA to 970 ms for the modified approach. Note,
the system has not been optimized for runtime performance yet.



(a) right eye, zoom-level 0

(d) right eye, zoom-level 1
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Figure 5: (a) to (e): DGHT models used for baseline landmark localization, where the gray value
denotes the individual model point weight. (f): 3D DGHT model used for landmark combination.
The symbols illustrate the corresponding landmark layer (circle: right eye layer, square: left eye
layer, diamond: chin layer) and the gray value represents the model point weight. Note, that model
points with negative weights, which ensure a better discrimination of similar object, are not shown
for clarity since they only play a minor role in these experiments.

A clear advantage of the DGHT approach in comparison to most other state-of-the-art lo-
calization techniques is the visual interpretability of the models, which reveal the shape
of the most discriminative structures as well as the importance of each individual model
point. In the localization models of zoom level O (Figure 5 (a) to (c)), for example, it
can be seen that the localization heavily relies on both eyes and the mouth. The nose,
is hardly represented by model points since it is a facial structure which is rarely visible
in the feature images and, in addition to that, highly variable (Figure 6(b)). Another in-
teresting aspect, which can be seen in the model images, is that they represent different
head positions at the same time to cope with the strong head pose variation contained in
the PUT database. For demonstrating this aspect, Figure 6 shows (a) some original images
with overlayed model, (b) the corresponding edge feature images, and (c) the model points
which voted for the best localization hypotheses.

In zoom level 1 (Figure 5 (d) und (e)), the eye localization models clearly display two con-
centric circles, representing the iris and the pupil respectively. This search structure has
also been integrated in many other systems by using expert knowledge [TB11, DLCDO04,
VGOS8, NG12] which demonstrates that the DGHT may learn and incorporate this kind of
knowledge fully automatically without the need for a detailed insight into the localization
problem. Other model points, contained in the localization model, represent the eyebrows
and eyelids, which have different positions depending on the viewing direction, and reflec-
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Figure 6: (a) Original images with overlayed model, (b) corresponding feature images, (c) model
points which voted for the best localization hypotheses in the respective image. The used model is
identical to Figure 5(b).

—
o U~

Figure 7: Examples of image extracts in zoom level 1 with corresponding feature images

tions of the flash on the eyeball (see Figure 7). This also contradicts the common modeling
assumption that the sclera is always brighter than the iris, which in turn is brighter than the
pupil.

When studying the model for the landmark combination (Figure 5 (f)), it is apparent that
model points of the chin have a large scattering and very similar weights while the impor-
tant points, representing the eye, are much more focussed. This is because of the lower
reliability of the chin localizer, which has a mean error of 49 pixels in comparison to
21 and 23 pixels for left and right eye, respectively. It is also worth mentioning that the
increased robustness of the landmark combination goes together with a loss in accuracy
since the model is more blurred. The increase of the eye localization mean error to 29
and 31 pixels for the left and right eye in zoom level O after the landmark combination is
compensated by the more precise edge based localization model applied in zoom level 1.
In zoom level 1, the mean error was reduced to 12 and 10 pixel.
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5 Conclusion

In this contribution two novel techniques for an improved eye localization in portrait im-
ages based on the Discriminative Generalized Hough Transform have been presented. By
using a task-specific multi-level strategy and a novel facial landmark combination tech-
nique it was possible to increase the iris localization rate from 96.6 to 97.9%. This result
is promising, since the variation of the head pose in the used public PUT face database
is quite large and the applied error measure considers the worst of a left and right eye
localization attempt.

The general standard MLA, which gradually zooms into the target object by halving the
search space in each level, could be shown to be suboptimal. A more task-specific ap-
proach, adjusting the zooming strategy with respect to the relevant structures and con-
fusable objects, may significantly improve the success rate. For the given task of eye
localization, with two very confusable objects, a good strategy is an early limitation of the
search space to a region, covering only a single eye.

The novel approach for facial landmark detection, which has been introduced in this pa-
per, could be combined with the modified MLA and further increases the robustness of the
system in the first zoom level. With this framework, it could be shown for the first time
that the DGHT is applicable for both, the individual localization of various landmarks and
combined usage in a higher-level localization model. This comes together with the pos-
sibility to visually interpret the generated DGHT models in the different stages unveiling
discriminative structures and important model parts.

Although in this contribution only three facial landmarks, both eyes and the chin, have
been combined with the novel method, the approach may theoretically incorporate an un-
limited number. Since the applied discriminative training procedure identifies and penal-
izes model points of weak landmarks, not supporting the localization, it is possible to
select the most discriminative ones from a large set of candidates. A systematic evaluation
of this idea, selecting optimal landmarks in an iterative training procedure as well as eval-
uation on other databases and comparision with other methods will be done by our group
in the next future.
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