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Enabling Malleability for Livermore Unstructured
Lagrangian Explicit Shock Hydrodynamics using LAIK
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Abstract: Malleability, i.e., the ability for an application to release or acquire resources at runtime,
has many benefits for current and future HPC systems. Implementing such functionality, however,
is already difficult in newly written code and an even more daunting challenge when considering
the enhancement of existing legacy code to support malleability. LAIK is a recent proposal for
a dynamic and flexible parallel programming model that separates data and execution into two
orthogonal concerns. These properties promise easier malleability as the runtime can partition
resources dynamically as needed, as well as easier incremental porting of existing MPI code. In this
paper, we explore the malleability of LAIK with the help of laik-lulesh, a LAIK-based port of
LULESH, a proxy application from the CORAL benchmark suite. We show the steps required for
porting the application to LAIK, and we present detailed scaling experiments that show promising
results.
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1 Introduction

With the Sierra and Summit systems at LLNL and ORNL, respectively, High Performance
Computing (HPC) has reached its last milestone before exascale computing. On this road,
the environment of HPC systems has become more and more dynamic; most existing HPC
applications, however, are rigid and lack support for malleability. In order to cope with
the needed goals in efficiency, energy consumption, and fault tolerance [Kel1], we must
overcome such rigidness and enhance HPC applications with more flexibility.

Much effort has been put into enabling malleability in HPC using a wide range of approaches.
Some of them target application transparency. An example is MPI Sessions [Hol6], a
proposed extension to the MPI standard that allows the instantiation of MPI multiple
times at runtime. Other studies focus on the enhancement of HPC system software: Flux
[Ah18] is a next-generation job scheduler that allows users to allocate and deallocate
resources dynamically in a fine-grained way. Some of the existing work also focuses on
the combination of minimal application modification and system software: Invasive MPI
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and Invasive Resource Manager [Ur12] provide a modified MPI and a modified SLURM
resource manager, which allows for different phases in applications demanding different
types and amounts of resources.

A pure application-oriented approach is LAIK [WYT17], a library assisting in dynamically
scheduling the execution of HPC applications by separating the concerns for data location and
computation. Initially designed for fault tolerance purposes, LAIK also enables elasticity that
can be controlled from the outside. It supports incremental porting of an existing application,
allowing the user to reuse most of the existing codebases. In this paper, we demonstrate the
malleability properties of LAIK on a well-known proxy application - LULESH; an iterative
solver for the Sedov Blast Problem, which is highly relevant in real life. LULESH is part of
the CORAL benchmarks3. It was ported to different parallel programming models [Kal3]
for investigation, which allows us to make interesting comparisons with our results.

The main contributions of this paper are: (1) we provide a fully functional port (Laik-1lulesh)
of LULESH to LAIK with enhanced malleability features and; (2) we identify the limitations
of LAIK with an in-depth performance analysis of our 1aik-1lulesh application.

2 Related Work

2.1 LULESH Ports LULESH - as one of the Coral benchmarks - has been ported to a number
of programming models and languages, including OpenMP, CUDA, AMP, OpenACC, Loci,
Liszt, Chapel, and Charm++. A summary of all versions of LULESH is presented by Karlin
et at. [Kal2]. An in-depth study of some ports of LULESH and their performance evaluation
is presented by Karlin et at. [Kal3]. According to the authors, Loci [LGO05] and Charm++
provide comparable performance to the reference code using MPI.

2.2 Programming Models Many programming models support writing malleable applica-
tions. Charm++[KK93] is a machine independent parallel programming system. Its dynamic
load balancing distributes workloads between different machines at runtime. Adaptive MPI
(AMPI]) [HLKO4] is a flexible MPI implementation based on Charm++, with MPI ranks
running on virtual Processing Units (PU). The mapping between physical and virtual PUs is
done by the Charm Runtime System (RTS), which benefits from the flexibility of Charm++.
Legion [Bal2] is a data-centric programming model that provides automatic mechanisms for
data handling and processing. Based on user-specified workflow mechanisms, the runtime
takes care of all data movements during execution. The main difference between Legion and
LAIK is that LAIK works with index spaces and partitionings abstracting data distribution,
and it informs the user when changes need to be applied. The physical distribution and
processing of the data still rely on the user’s specification. Other task-based programming
models such as OmpSs[Mal5] and StarPU [Aull] also provide fine granular control
of resource and data mapping and processing. With a task-based programming model,

3 https://asc.11lnl.gov/CORAL-benchmarks/
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malleability is ensured as both workload and data can be easily migrated over hardware
resources across task boundaries.

2.3 Benchmarks Many benchmarks are used for performance evaluation of HPC libraries and
programming models, e.g., the NAS Parallel Benchmarks[Ba91], the CORAL Benchmarks,
and the Rodinia Benchmarks [Ch09].

3 LAIK - Library for Automatic Data Migration

LAIK[WYTI17] is a lightweight library for automatic data migration in parallel applications
featuring an SPMD approach similar to the one used in many MPI codes. The application
programmer is required to transfer the responsibility of partitioning his or her application
data to LAIK. However, the actual partitioning algorithm, called a Partitioner, which assigns
portions of an abstract index space to processes, remains under application programmer
control. The application programmer can specify a customized Partitioner using callbacks.

Examples provided as presets are the “all” partitioning (the whole index space is replicated
to all processes, i.e., requesting complete local copies) or “disjunctive block distribution”
(every participating process holds a portion of the index space).

The communication for data structures is implicitly specified as a set of transitions between
different partitionings. A transition allows users to specify complex combinations of copy
operations, broadcasts and reductions. Transitions can be declared in advance and result in
a sequence of abstract communication actions on the index space, to be executed later by
the user or by LAIK. The latter is done when asking LAIK to manage the data that is bound
to an index space. Executing a transition for such data results in direct communication
as required. We can use this approach in LAIK to react to internal and external requests
to change the current partitioning by calculating a new partitioning, even on a modified
process group, allowing the application to become malleable.

LAIK features several different API-levels, which provide different levels of abstraction,
allowing programmers to port their application incrementally. The basic “index space” API
only transfers the responsibility of index space partitioning to LAIK. The corresponding
transitions and action sequences are calculated by LAIK, while the actual communication is
carried out by the user application. The more sophisticated “data” API allows developers to
hand over complete control of data structures to LAIK, allowing automatic communication.
This way, all communication is hidden from the user, resulting in lean, purly data-oriented
code. In addition, LAIK does internal optimization for different communication patterns,
which reduces development costs.

Previous studies with LAIK [WYT17; Yal8] have already shown the effectiveness and
efficiency of LAIK in both performance and basic malleability, but are limited to simple
data structures with simple communication patterns. In this paper, we evaluate LAIK’s
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capability by porting the rather complex program LULESH to LAIK. For our experiments,
we use the published open-source LAIK-Version on Github*.

4 Porting The Livermore Unstructured Lagrangian Explicit Shock
Hydrodynamics (LULESH) to LAIK

Livermore Unstructured Lagrange Explicit Shock Hydrodynamics (LULESH) is a benchmark
that solves the Sedov blast problem using Lagrangian hydrodynamics [HKG].

In each time step of the simulation, a number of hydrodynamic fields are updated by
the computational kernels. Data is stored either related to the initially cube-shaped finite
elements covering a 3d domain ("elemental’ data) or related to the vertices of the finite
elements ('nodal’ data). After the initialization of the fields, coordinates and boundary
conditions the timestep loop executes until convergence.

For our work, we use the MPI/OpenMP hybrid implementation of LULESH 2.0, where MPI
communication is explicitly coded. This is typical for many HPC applications: developers
do not want to start from scratch for an existing application to add new functionality such as
malleability.

The selected implementation of LULESH is based on domain decomposition for data
partitioning and uses non-blocking communication (Isend/Irecv) at various points in each
time step. Two main kernels that require communication are executed in each iteration:
(1) stencil-wise updates of data structures such as velocity gradients which require halo
exchange at borders of domains. (2) aggregation of contributions from element quantities
to the surrounding nodes, e.g., in the calculation of force fields, which also requires a
halo exchange followed by an aggregation. Our goal in porting LULESH to LAIK is to
keep the number of changes as small as possible: code accessing data structures as well
as computational kernels should remain unchanged. LAIK is used for two tasks: a) it is
responsible for regular value updates in iterations (e.g., for halo exchanges), replacing MPI
in the original code; b) it has to migrate data for re-distribution to support malleability.
Correspondingly, porting can be done in two steps: first, we replicate original communication
by letting LAIK maintain the data structures that get updated in each iteration. Second, for
malleability, also data structures used purely locally have to be maintained by LAIK, as it
also needs to be migrated on re-distribution. Furthermore, small modifications are required
in the main iteration loop to check for re-partitioning requests and trigger data repartitioning
in LAIK. It is important to mention that LULESH 2.0 only supports a cubic number of
MPI processes. This limitation still holds for our LAIK implementation as we are neither
changing the partitioning algorithm nor the compute kernel. In the following, we present
the steps for porting LULESH to LAIK. The major changes made to the LULESH program
execution flow are illustrated in Pseudocode 1 vs. Pseudocode 2.

4 https://github.com/envelope-project/laik, commit 504385
5 The base version for our port is https://github.com/LLNL/LULESH, commit a328f79.
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Pseudocode 1: Simplified Pseudocode for MPI Implementation of LULESH [HKG]

MPI_Init(Q);
Domain locDom «— InitMeshDecomposition(rank, size, sz);
while (/endOfSimulation) do
CalcTimeIncrement();
LagrangeLeapFrog(Q);
end
MPI_Finalize();

Pseudocode 2: Simplified Pseudocode for laik-lulesh [HKG]
Laik_init_mpi();
Domain locDom «— InitMeshDecomposition(rank, size, sz);
while (/endOfSimulation) do
if (needRepart) then
Domain newDom «— InitMeshDecomposition(newRank, newSize, sz);
Laik_repartitioning_and_migrate(locDom, newDom);
locDom « newDom;
end
CalcTimeIncrement();
LagrangeLeapFrog();
end
Laik_finalize();

Step 1: Adaptation of data structures requiring MPI communication. LULESH uses
asynchronous communication for force fields, namely fx, fy, £z and nodalMass followed by
aggregation. LAIK provides such communication patterns through so-called “transitions”
between different partitionings, which are trigged by calling the API call laik_switch. For
that, we create halo regions by introducing overlapping partitions on a global nodal index
space, so that the neighboring tasks share one layer of nodes. As LAIK does not provide
such partitioning out of the box, we implement the partitioner algorithm ourselves as a core
part of our laik-1lulesh port. While this partitioner is similar to the one in the reference
code, it uses a different layout: the reference code uses std: : vector with a compact xyz
(Figure 1 right) layout, while our implementation of laik-1lulesh relies on a non-compact
xyz (Figure 1 left) layout. It divides a local domain into “slices”. The reason for this layout is
that, although LULESH works on a 3D domain, it is mapped into a 1D data structure during
execution. As we stick to the original kernels, we also need to provide 1D data storage.

From the perspective of LAIK this data is shared between the two neighboring tasks and
updated by each task independently. After each iteration, we call laik_switch, which
triggers the reduction operations on shared data, replacing any explicit communication code.
LULESH uses an asynchronous halo exchange for velocity gradient fields, i.e., delv_xi,
delv_eta and delv_zeta, and these data structures needed to be ported to LAIK as well. For
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Fig. 1: Illustration of laik_slices for a problem with local domains of size 4 x 4 X 4 elements. Each
color represents one laik_slice in the partitioning. Current implementation of laik_lulesh relies
on many slices (left) and the reference code relies on a compact allocation of data (right).

Fig. 2: Element partitionings: exclusive partitioning (left) and halo (right) partitioning. This figure is
an illustration for a problem with 8 X 8 x 8 elements using 8 tasks (8 sub-domains, e.g., cubes to be
processes by each task). Each sub-domain (indicated in red) contains 4 X 4 X 4 elements in exclusive
partitioning and halo partitioning extends it with one layer.

this, we create two partitionings — exclusive and halo — again using custom partitioners.
A switch between them triggers the communications for the halo exchange (see Figure 2).

Internally, LULESH uses std: :vector as its data container and implements an accessor
interface layer on top. This allows modifications of the underlying data structure by
only replacing std: :vector. For that, we introduce laik_vector encapsulating LAIK
structures and implement the required accessor interfaces. In the end, all data structures
with communication requirements are ported to LAIK and all MPI calls are eliminated.

Step 2: Enabling Malleability. LAIK can support malleability by having control over the
underlying data structures. As LULESH uses a number of data structures in addition to
those mentioned above, those need to be handed over to LAIK as well. For that, we provide
additional partitions according to the needed data distribution before and after repartitioning.
As above, calling laik_switch triggers the required MPI communication under the hood
and re-distributes data according to the target partitioning. In addition, we modify the main
loop to handle repartitioning requests. If a process is no longer part of an active calculation
after repartitioning, this process is discarded by calling laik_finalize.

Additional Optimizations. We consider multiple optimizations to improve the performance
of laik-lulesh. First, the transitions are executed in every iteration. Therefore, we use
LAIK’s advanced APIs in order to pre-calculate and cache of the transitions and
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corresponding action_sequences between the above-mentioned partitionings. Moreover,
our implementation creates many 1D slices and, as referencing data between laik_switches
normally invalidates the pointers for all the slices, we use LAIK’s reservation API, which
guarantees the validity of addresses of data across “switch”es.

5 Evaluation

To show the performance of our ported LULESH code, we carried out strong and weak
scaling tests on SuperMUC Phase II (SuperMUC) which consists of 3072 nodes, each
equipped with 2 Intel Haswell Xeon Processor E5-2697v3 and 64 GB of main memory.

5.1 Weak Scaling We execute both the reference code lulesh2 .0 and our ported laik-lulesh
five times with problem size 16* corresponding to s = 16 (parameter -s). We report the
average runtime per iteration without initialization and finalization. The upper bound of
the number of iteration is 10,000. The normalized runtime per iteration is represented in
Figure 3 by the box plots and noted on the y-axis. On the x-axis, the number of MPI Tasks
used in experiments is given. We can see an increase in iteration runtime with an increasing
number of MPI tasks from our code. However, the reference code scales almost perfectly
with only a slight increase. The blue line in Figure 3 represents overhead, which scales up
with the number of processes. Our hypothesis for the source of this increasing overhead is
the lack of support for asynchronous communication in LAIK and we, therefore, continue
with strong scaling experiments to pinpoint the source of this overhead.

The overhead in our laik-1lulesh is in an acceptable range for a mid-sized run (e.g., 10%
at 512 processes), which is a realistic use case scenario for a malleable application. For
extreme scaling, however, LAIK must be further adapted and tuned.
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Fig. 3: Weak scaling comparison of laik-lulesh with reference LULESH

5.2 Strong Scaling Due to the limited support for an only cubic number of processes, the
following limitation applies: let C = s* * p be the global 3-dimensional problem size to be
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Fig. 4: Strong Scaling Comparison of laik-lulesh with reference LULESH

held constant for all strong scaling experiments, with s being the local one-dimensional
problem size (parameter -s i); furthermore, let p be the number of MPI processes and
S = C%; the following implication applies: (C = 3 % p) => (S = s * p%). As p% and s
must be natural numbers we set up our strong scaling experiments with p% being powers of
2 and S = 256. The resulting corresponding tuples of (p, s) used in this paper for strong
scaling are (1° = 1,256), (2° = 8, 128), (4> = 64,64), (8° = 512,32) and (16> = 4096, 16).
The results from these experiments are illustrated in Figure 4. Note that the y-axis is
log(2)-scaled. As expected, similar scaling behavior can be observed for both the LAIK
version and the reference version with up to 512 processes. With 4096 processes, our port
shows significant overhead (factor 2x slower than the reference code). In addition, the
overhead curve first decreases then increases with a large number of processes. Figure 4
shows a relatively constant overhead for experiments with 8, 64, and 512 processes. This is
most likely due to a constant overhead of using 1D slices in the LAIK implementation. In
addition, Figure 4 shows a problem similar to weak scaling for 1laik-1lulesh with a large
number of processes. This is very likely the result of lack of support for asynchronous
communication in LAIK, which scales with the number of point-to-point communication
(and the number of processes).

5.3 Repartitioning Using LAIK, we can now shrink the number of MPI processes during the
execution of laik-1lulesh. To test how this shrinking affects the scaling behavior before and
after repartitioning, we conduct a series of scaling experiments. We set up the repartitioning
experiments with p% being powers of 2 and S = 64 and enforce a repartitioning to the
smaller, next supported number of MPI processes in the strong scaling tests. This results in
the following repartitioning experiments: from 8 to 1, from 64 to 8 and from 512 to 64. We
fix the number of iterations (parameter -1) to 2000 iterations for all experiments and execute
the kernel for 250 iterations with the initial number of MPI processes and then perform the



Porting LULESH to LAIK

(s)

j =
S
©0.1250000
g
5
5] Repartitioning
E0.0312500 before
5 W after
(7
N
T
13
S ——
Z0.0078125
512t064 64108 gor  1ypeof
Migration

Fig. 5: Strong scaling result for 1aik-1lulesh with enforced repartitioning

repartitioning. Finally, the kernel is executed another 1750 iterations until completion. We
execute a total of five runs per configuration on SuperMUC.

The results are provided in Figure 5. On the x-axis, we list the type of migration, and on
the y-axis the normalized time per iteration in log scale, respectively. Both curves show
the same trend. In addition, the runtime for a given scale (e.g., p=64) is almost the same,
regardless of whether it is the initial number of processes or the state after repartitioning.
The required time for repartitioning is presented in Table 1.

As for the effectiveness of the repartitioning function, our test shows little to no overhead on
the normalized kernel execution time of laik-1lulesh and also a migration has little impact.
Tab. 1: Required Time for 1aik-1lulesh with Enforced Repartitioning

Configuration ‘ Time for Repartitioning

512to64 ~1.5678s
64t08 ~0.8803s
8tol ~1.6979s

6 Conclusions and Future Work

We presented laik-lulesh, a port of the Livermore Unstructured Lagrangian Explicit
Shock Hydrodynamics (LULESH) to LAIK. The ported code gains enhanced malleability
at runtime. Moreover, it is capable of repartitioning its data as needed. All data structures,
as well as all MPI communication, are transferred to LAIK’s responsibility, while the actual
kernel did not have to be modified. Results from weak and strong scaling experiments show
a low constant overhead and an increasing overhead when scaling the number of processes.
The constant part of the overhead stems from the additional abstraction introduced by
LAIK. The overall overhead stays acceptable for up to 1000 MPI processes, which is a
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typical configuration for malleable applications. Further, the repartitioning experiments
show promising performance result, as no additional overhead from repartitioning can
be observed. This shows that LAIK is a useful approach to assist programmers to enable
malleability for existing HPC applications.

As next steps, we will enhance LAIK’s asynchronous communication behavior. In addition,
we will work on the reduction of the constant overhead by using a proposed layout interface
from LAIK. Finally, we plan to work with the original LULESH team to overcome the
limitation of only allowing a cubic number of processes.
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