P265 - BTW2017 - Datenbanksysteme für Business, Technologie und Web
Auflistung P265 - BTW2017 - Datenbanksysteme für Business, Technologie und Web nach Autor:in "Alexandrov, Alexander"
1 - 1 von 1
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragEmma in Action: Deklarative Datenflüsse für Skalierbare Datenanalyse(Datenbanksysteme für Business, Technologie und Web (BTW 2017), 2017) Alexandrov, Alexander; Krastev, Georgi; Louis, Bernd; Salzmann, Andreas; Markl, VolkerSchnittstellen zur Programmierung paralleler Datenflüsse, die auf Funktionen höherer Ordnung (wie map und reduce) basieren, sind in den letzten zehn Jahren durch Systeme wie Apache Hadoop, Apache Flink und Apache Spark populär geworden. Im Gegensatz zu SQL werden solche Programmierschnittstellen in Form eingebetteter Domänenspezifischer Sprachen (eDSLs) realisiert. Im Kern jeder eDSL steht ein dedizierter Typ, der verteilte Datenmengen repräsentiert und Berechnungen auf ihnen ermöglicht, wie z.B. DataSet in Flink oder RDD in Spark. Aufgrund der Integration von eDSLs in einer generischen Programmierumgebung (Java, Scala, oder Python) stellen sie eine flexiblere Alternative zu klassischen Ansätzen (z.B. SQL) dar, um gängige Aufgaben (z.B. ETL-Prozesse) in einer skalierbaren, Cloud-basierten Infrastruktur zu implementieren.