(KI - Künstliche Intelligenz: Vol. 29, No. 4, 2015) Missura, Marcell; Behnke, Sven
Bipedal walking is a complex whole-body motion with inherently unstable dynamics that makes the design of a robust controller particularly challenging. While a walk controller could potentially be learned with the hardware in the loop, the destructive nature of exploratory motions and the impracticality of a high number of required repetitions render most of the existing machine learning methods unsuitable for an online learning setting with real hardware. In a project in the DFG Priority Programme Autonomous Learning, we are investigating ways of bootstrapping the learning process with basic walking skills and enabling a humanoid robot to autonomously learn how to control its balance during walking.