Auflistung nach Autor:in "Eisert, Peter"
1 - 5 von 5
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragAutomatisierte Frucht- und Pflanzenerkennung in Apfelplantagen durch künstliche Intelligenz(44. GIL - Jahrestagung, Biodiversität fördern durch digitale Landwirtschaft, 2024) Gerstenberger, Michael; Kovalenko, Mykyta; Przewozny, David; Magnusson, Jannes; Gassen, Eike; Pawlak, Jakub; Hirth, Jochen; von Hirschhausen, Laura; Runde, Detlef; Hilsmann, Anna; Eisert, Peter; Bosse, SebastianZwei wichtige Ziele des Precision Farming im Obstanbau sind die automatische Bonitur von Apfelplantagen und die Ernte von Äpfeln: Beide setzen voraus, dass Bäume und Früchte zuverlässig erkannt werden. Mittlerweile existieren erste öffentliche Datensätze zum Training von KI-Modellen zur Erkennung von Früchten in Obstplantagen, wie z. B. der Benchmark-Datensatz MinneApple mit über 1000 annotierten Bildern. Eine zentrale Herausforderung bleibt einerseits die begrenzte Generalisierbarkeit der Apfelerkennung, die mit diesen Datensätzen erzielt werden kann. Andererseits bestehen neben der Anzahl der Früchte weitere wichtige Kennzahlen im Obstanbau wie die Fläche der Blätter und Blüten, welche die Bäume im Frühjahr tragen und für die automatische Bonitur von Interesse sind. Die Ziele der hier vorgestellten Forschung sind daher (1) eine Erweiterung der Datenbasis, (2) die vergleichende Evaluation von state-of-the-art Objektdetektoren für die Apfelerkennung über verschiedene Datensätze hinweg und (3) eine neue Methode zur Segmentierung der Bäume. Um diese Ziele zu erreichen, wurden weitere Daten maschinengestützt erfasst und mehr als 600 Bilder mit Hilfe von interaktiven Verfahren annotiert. Diese nutzen jeweils ein vortrainiertes Modell, um dem Nutzer Vorschläge für die Position der Äpfel zu machen, die dann manuell korrigiert und ergänzt werden können. Für die Evaluierung der Apfelerkennung wurden gängige Modellarchitekturen zur Objekterkennung (YOLOv8, ResNet, SSD) für die Detektion von Äpfeln trainiert und im Sinne eines Modellvergleichs getestet. YoloV8 liefert die besten Ergebnisse für die Erkennung von Äpfeln am Baum, die mit einem F1-Wert von 0.77 insgesamt auch sehr hoch ist. Die Übertragbarkeit der Ergebnisse wurde durch eine Kreuzevaluierung mit MinneApple und MS-COCO überprüft und es zeigt sich, dass die Modelle bei Anwendung auf anderen Testdatensätze erheblich schlechter abschneiden als bei der Evaluierung in Bezug auf die zum Training gehörenden Testbilder. Voraussetzung für eine semantische Segmentierung ist die Erkennung der Bäume der vordersten Baumreihe, die hier ebenfalls untersucht wird. Hierbei kommt Deep Optical Flow (RAFT) zum Einsatz, das die Bewegungsparallaxe nutzt, um Tiefeninformationen zu schätzen, und keine rechenintensive Punktwolkenrekonstruktion erfordert. Das Verfahren liefert qualitativ gute Ergebnisse für einen Großteil der Bilder. Unsere Ergebnisse unterstreichen die Bedeutsamkeit von umfangreichen Datensätzen, die es erlauben, Modelle domänenspezifisch zu trainieren und vergleichend zu evaluieren.
- KonferenzbeitragNachhaltige Landwirtschaft mittels Künstlicher Intelligenz – ein plattformbasierter Ansatz für Forschung und Industrie(43. GIL-Jahrestagung, Resiliente Agri-Food-Systeme, 2023) Bosse, Sebastian; Berns, Karsten; Bosch, Johannes; Dörr, Jörg; Eichhorn, Frederick Charles; Eisert, Peter; Fischer, Christoph; Gassen, Eike; Gerstenberger, Michael; Gerighausen, Heike; Heil, Jonathan; Hilsmann, Anna; Hirth, Jochen; Huber, Christopher; Hussaini, Mortesa; Kasparick, Martin; Kloke, Peter; Krause-Edler, Hartmut; Mackle, Lukas; Magnusson, Jannes; Möhrle, Felix; Möller, Markus; Pickel, Peter; Rautenberg, Clemens; Schotten, Hans Dieter; Stanczak, Slawomir; Thiele, Lars; Ücdemir, Henrik; Wania, Annett; Stein, AnthonyDigitale Technologien gelten als möglicher Schlüssel zur Verknüpfung von Nachhaltigkeit, Klimaanpassung und wirtschaftlicher Effizienz in der Pflanzenproduktion. Die Heterogenität und Dezentralität des landwirtschaftlichen Systems stellt besondere Anforderungen an den Entwurf datengetriebener Lösungen: Daten entstehen lokal in landwirtschaftlichen Betrieben unterschiedlicher Größe; ihre Erhebung und Auswertung erfolgt meist multimodal, dezentral und durch Dritte; landwirtschaftliche Stakeholder stellen als Dateneigentümer hohe Ansprüche an die Datensouveränität. Das Forschungsprojekt „Nachhaltige Landwirtschaft mittels Künstlicher Intelligenz“ (NaLamKI) entwickelt einen plattformbasierten Ansatz, um diese Anforderungen zu adressieren und setzt hierzu auf Cloud-Edge Services zur 1) Erhebung divers strukturierter landwirtschaftlicher Daten, 2) KI-gestützte Fusion und Auswertung dieser Daten sowie 3) nutzerorientierte Haltung und Bereitstellung der erzeugten Datenprodukte in einem digitalen Farm-Twin unter Wahrung der Datensouveränität, Schaffung von (Daten-)Interoperabilität sowie GAIA-X-Konformität. Dieser Beitrag leitet die Notwendigkeit dieses Forschungsansatzes her, erläutert dessen zugrunde liegende Konzepte und diskutiert wissenschaftliche Ansatzpunkte und Ergebnisse sowie offene Herausforderungen und Chancen dieses integrierten Ansatzes.
- ZeitschriftenartikelPreserving Memories of Contemporary Witnesses Using Volumetric Video(i-com: Vol. 21, No. 1, 2022) Schreer, Oliver; Worchel, Markus; Diaz, Rodrigo; Renault, Sylvain; Morgenstern, Wieland; Feldmann, Ingo; Zepp, Marcus; Hilsmann, Anna; Eisert, PeterVolumetric Video is a novel technology that enables the creation of dynamic 3D models of persons, which can then be integrated in any 3D environment. In contrast to classical character animation, volumetric video is authentic and much more realistic and therefore ideal for the transfer of emotions, facial expressions and gestures, which is highly relevant in the context of preservation of contemporary witnesses and survivors of the Holocaust. Fraunhofer Heinrich-Hertz-Institute (HHI) is working on two projects in this cultural heritage context. In a recent project between UFA and Fraunhofer HHI, a VR documentary about the last German survivor of the Holocaust Ernst Grube has been produced. A second project started in collaboration with the University Munich, faculty of languages and literature and Geschwister-Scholl-institute for political science, creating a concept for a VR experience together with Dr. Eva Umlauf, the youngest Jewish survivor in the concentration camp in Auschwitz. This paper presents key aspects of volumetric video and details about both projects including a discussion about the user perspective in such a VR experience.
- KonferenzbeitragStyle Your Face Morph and Improve Your Face Morphing Attack Detector(BIOSIG 2019 - Proceedings of the 18th International Conference of the Biometrics Special Interest Group, 2019) Seibold, Clemens; Hilsmann, Anna; Eisert, PeterA morphed face image is a synthetically created image that looks so similar to the faces of two subjects that both can use it for verification against a biometric verification system. It can be easily created by aligning and blending face images of the two subjects. In this paper, we propose a style transfer based method that improves the quality of morphed face images. It counters the image degeneration during the creation of morphed face images caused by blending. We analyze different state of the art face morphing attack detection systems regarding their performance against our improved morphed face images and other methods that improve the image quality. All detection systems perform significantly worse, when first confronted with our improved morphed face images. Most of them can be enhanced by adding our quality improved morphs to the training data, which further improves the robustness against other means of quality improvement.
- ZeitschriftenartikelThe Collaborative Research Center FONDA(Datenbank-Spektrum: Vol. 21, No. 3, 2021) Leser, Ulf; Hilbrich, Marcus; Draxl, Claudia; Eisert, Peter; Grunske, Lars; Hostert, Patrick; Kainmüller, Dagmar; Kao, Odej; Kehr, Birte; Kehrer, Timo; Koch, Christoph; Markl, Volker; Meyerhenke, Henning; Rabl, Tilmann; Reinefeld, Alexander; Reinert, Knut; Ritter, Kerstin; Scheuermann, Björn; Schintke, Florian; Schweikardt, Nicole; Weidlich, MatthiasToday’s scientific data analysis very often requires complex Data Analysis Workflows (DAWs) executed over distributed computational infrastructures, e.g., clusters. Much research effort is devoted to the tuning and performance optimization of specific workflows for specific clusters. However, an arguably even more important problem for accelerating research is the reduction of development, adaptation, and maintenance times of DAWs. We describe the design and setup of the Collaborative Research Center (CRC) 1404 “FONDA -– Foundations of Workflows for Large-Scale Scientific Data Analysis”, in which roughly 50 researchers jointly investigate new technologies, algorithms, and models to increase the portability, adaptability, and dependability of DAWs executed over distributed infrastructures. We describe the motivation behind our project, explain its underlying core concepts, introduce FONDA’s internal structure, and sketch our vision for the future of workflow-based scientific data analysis. We also describe some lessons learned during the “making of” a CRC in Computer Science with strong interdisciplinary components, with the aim to foster similar endeavors.