Auflistung nach Autor:in "Hansson, Erik"
1 - 3 von 3
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragFlexible scheduling and thread allocation for synchronous parallel tasks(ARCS 2012 Workshops, 2012) Kessler, Christoph W.; Hansson, ErikWe describe a task model and dynamic scheduling and resource allocation mechanism for synchronous parallel tasks to be executed on SPMD-programmed synchronous shared-memory MIMD parallel architectures with uniform, unit-time memory access and strict memory consistency, also known in the literature as PRAMs (Parallel Random Access Machines). Our task model provides a two-tier programming model for PRAMs that flexibly combines SPMD and fork-join parallelism within the same application. It offers flexibility by dynamic scheduling and late resource binding while preserving the PRAM execution properties within each task, the only limitation being that the maximum number of threads that can be assigned to a task is limited to what the underlying architecture provides. In particular, our approach opens for automatic performance tuning at run-time by controlling the thread allocation for tasks based on run-time predictions. By a prototype implementation of a synchronous parallel task API in the SPMD- based PRAM language Fork and experimental evaluation with example programs on the SBPRAM simulator, we show that a realization of the task model on a SPMD- programmable PRAM machine is feasible with moderate runtime overhead per task.
- ZeitschriftenartikelFlexible Scheduling and Thread Allocation for Synchronous Parallel Tasks(PARS: Parallel-Algorithmen, -Rechnerstrukturen und -Systemsoftware: Vol. 29, No. 1, 2012) Kessler, Christoph; Hansson, ErikWe describe a task model and dynamic scheduling and resource allocation mechanism for synchronous parallel tasks to be executed on SPMD-programmed synchronous shared-memory MIMD parallel architectures with uniform, unit-time memory access and strict memory consistency, also known in the literature as PRAMs (Parallel Random Access Machines). Our task model provides a two-tier programming model for PRAMs that flexibly combines SPMD and fork-join parallelism within the same application. It offers flexibility by dynamic scheduling and late resource binding while preserving the PRAM execution properties within each task, the only limitation being that the maximum number of threads that can be assigned to a task is limited to what the underlying architecture provides. In particular, our approach opens for automatic performance tuning at run-time by controlling the thread allocation for tasks based on run-time predictions. By a prototype implementation of a synchronous parallel task API in the SPMDbased PRAM language Fork and experimental evaluation with example programs on the SBPRAM simulator, we show that a realization of the task model on a SPMDprogrammable PRAM machine is feasible with moderate runtime overhead per task.
- ZeitschriftenartikelA Quantitative Comparison of PRAM based Emulated Shared Memory Architectures to Current Multicore CPUs and GPUs(PARS-Mitteilungen: Vol. 31, Nr. 1, 2014) Hansson, Erik; Alnervik, Erik; Kessler, Christoph; Forsell, MarttiThe performance of current multicore CPUs and GPUs is limited in computations making frequent use of communication/synchronization between the subtasks executed in parallel. This is because the directory-based cache systems scale weakly and/or the cost of synchronization is high. The Emulated Shared Memory (ESM) architectures relying on multithreading and efficient synchronization mechanisms have been developed to solve these problems affecting both performance and programmability of current machines. In this paper, we compare preliminarily the performance of three hardware implemented ESM architectures with state-of-the-art multicore CPUs and GPUs. The benchmarks are selected to cover different patterns of parallel computation and therefore reveal the performance potential of ESM architectures with respect to current multicores.