Auflistung nach Autor:in "Heil, Jonathan"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragNachhaltige Landwirtschaft mittels Künstlicher Intelligenz – ein plattformbasierter Ansatz für Forschung und Industrie(43. GIL-Jahrestagung, Resiliente Agri-Food-Systeme, 2023) Bosse, Sebastian; Berns, Karsten; Bosch, Johannes; Dörr, Jörg; Eichhorn, Frederick Charles; Eisert, Peter; Fischer, Christoph; Gassen, Eike; Gerstenberger, Michael; Gerighausen, Heike; Heil, Jonathan; Hilsmann, Anna; Hirth, Jochen; Huber, Christopher; Hussaini, Mortesa; Kasparick, Martin; Kloke, Peter; Krause-Edler, Hartmut; Mackle, Lukas; Magnusson, Jannes; Möhrle, Felix; Möller, Markus; Pickel, Peter; Rautenberg, Clemens; Schotten, Hans Dieter; Stanczak, Slawomir; Thiele, Lars; Ücdemir, Henrik; Wania, Annett; Stein, AnthonyDigitale Technologien gelten als möglicher Schlüssel zur Verknüpfung von Nachhaltigkeit, Klimaanpassung und wirtschaftlicher Effizienz in der Pflanzenproduktion. Die Heterogenität und Dezentralität des landwirtschaftlichen Systems stellt besondere Anforderungen an den Entwurf datengetriebener Lösungen: Daten entstehen lokal in landwirtschaftlichen Betrieben unterschiedlicher Größe; ihre Erhebung und Auswertung erfolgt meist multimodal, dezentral und durch Dritte; landwirtschaftliche Stakeholder stellen als Dateneigentümer hohe Ansprüche an die Datensouveränität. Das Forschungsprojekt „Nachhaltige Landwirtschaft mittels Künstlicher Intelligenz“ (NaLamKI) entwickelt einen plattformbasierten Ansatz, um diese Anforderungen zu adressieren und setzt hierzu auf Cloud-Edge Services zur 1) Erhebung divers strukturierter landwirtschaftlicher Daten, 2) KI-gestützte Fusion und Auswertung dieser Daten sowie 3) nutzerorientierte Haltung und Bereitstellung der erzeugten Datenprodukte in einem digitalen Farm-Twin unter Wahrung der Datensouveränität, Schaffung von (Daten-)Interoperabilität sowie GAIA-X-Konformität. Dieser Beitrag leitet die Notwendigkeit dieses Forschungsansatzes her, erläutert dessen zugrunde liegende Konzepte und diskutiert wissenschaftliche Ansatzpunkte und Ergebnisse sowie offene Herausforderungen und Chancen dieses integrierten Ansatzes.
- KonferenzbeitragTowards crop yield prediction using Automated Machine Learning(43. GIL-Jahrestagung, Resiliente Agri-Food-Systeme, 2023) Heil, Jonathan; Valencia, Juan Manuel; Stein, AnthonyRecently, several Machine Learning models for crop yield prediction have been introduced in literature. The models differ in the underlying methodological approaches and show variations in the temporal and spatial resolution of the databases. For the creation of the models, a deep understanding of Machine Learning is required. Therefore, Automated Machine Learning, which aims to automate the creation process of Machine Learning models, offers a promising solution as an easy entry point in Machine Learning for crop yield prediction to non-professionals. Based on publicly available data for weather, phenological and yield observations, in this work, we created a dataset for winter wheat and winter barley on Germany’s regional districts level. Furthermore, an initial evaluation of four state of the art Automated Machine Learning frameworks and three baseline models has been conducted. The results showed almost always significantly better performance of models created by Automated Machine Learning.