Auflistung nach Autor:in "Heinrich, Kai"
1 - 4 von 4
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragIntegration von Topic Models und Netzwerkanalyse bei der Bestimmung des Kundenwertes(Workshop Gemeinschaften in Neuen Medien (GeNeMe) 2015, 2015) Heinrich, KaiIm Zuge der ungebremsten Ausbreitung des Web 2.0 und der längst eingetretenen Globalisierung der Märkte entwickelt sich das Wissen über die Bedürfnisse und Meinungen von Kunden zum erfolgskritischen Faktor in jedem Unternehmen. Es können jedoch nicht alle Kunden immer profitabel sein, denn nicht jeder Kunde liefert denselben Beitrag zum Unternehmenswert. Neben den offensichtlichen ökonomisch-monetären Kriterien, wie etwa Umsatz oder Deckungsbeitrag, spielen nach, (Cornelsen, 2000) und (Homburg & Schnurr, 1999) vermehrt auch nicht ökonomische Determinanten, wie Referenz- und Informationspotenziale eine große Rolle. Der Einfluss des Einzelnen wird durch die Weiterentwicklungen im Internet, wie sozialen Netzwerken oder Blogs ermöglicht. Das soziale Netzwerk Facebook verzeichnet über 1.42 Milliarden User weltweit. In den USA sind über 50 Prozent aller Internetnutzer bei Facebook registriert. Der Microblog Service Twitter zählt 288 Millionen Nutzer weltweit. Betrachtet man sich diese Zahlen, so lassen diese keinen Zweifel an der Integration des Web 2.0 in das tägliche Leben und somit auch in das Konsumentenverhalten aufkommen. In der vorliegenden Arbeit werden mit Hilfe der Methoden des Text Mining als Teilbereich der Business Intelligence (BI) und der sozialen Netzwerkanalyse die Referenzpotenziale einzelner Nutzer analysiert, wobei als Quelle das Verhalten der Nutzer bei der Kommunikation in sozialen Netzwerken herangezogen wird. Dabei setzt sich das Referenzpotential nicht ausschließlich aus netzwerkbezogenen Determinanten zusammen, sondern beinhaltet vielmehr auch Komponenten wie Fachwissen. Daher ist eine Integration von Inhalten und Netzwerkstrukturen nötig, um das Referenzpotential vollständig abzubilden. Das Gestaltungsziel der Arbeit besteht aus der Integration der Ansätze der sozialen Netzwerkanalyse und der Ansätze des Text-Mining um eine adäquate Beschreibung des Referenzpotentials mit Hilfe von Struktur- sowie Inhaltsdaten aus sozialen Netzwerken zu ermöglichen.
- ZeitschriftenartikelIntelligent User Assistance for Automated Data Mining Method Selection(Business & Information Systems Engineering: Vol. 62, No. 3, 2020) Zschech, Patrick; Horn, Richard; Höschele, Daniel; Janiesch, Christian; Heinrich, KaiIn any data science and analytics project, the task of mapping a domain-specific problem to an adequate set of data mining methods by experts of the field is a crucial step. However, these experts are not always available and data mining novices may be required to perform the task. While there are several research efforts for automated method selection as a means of support, only a few approaches consider the particularities of problems expressed in the natural and domain-specific language of the novice. The study proposes the design of an intelligent assistance system that takes problem descriptions articulated in natural language as an input and offers advice regarding the most suitable class of data mining methods. Following a design science research approach, the paper (i) outlines the problem setting with an exemplary scenario from industrial practice, (ii) derives design requirements, (iii) develops design principles and proposes design features, (iv) develops and implements the IT artifact using several methods such as embeddings, keyword extractions, topic models, and text classifiers, (v) demonstrates and evaluates the implemented prototype based on different classification pipelines, and (vi) discusses the results' practical and theoretical contributions. The best performing classification pipelines show high accuracies when applied to validation data and are capable of creating a suitable mapping that exceeds the performance of joint novice assessments and simpler means of text mining. The research provides a promising foundation for further enhancements, either as a stand-alone intelligent assistance system or as an add-on to already existing data science and analytics platforms.
- ZeitschriftenartikelObjekterkennung im Weinanbau – Eine Fallstudie zur Unterstützung von Winzertätigkeiten mithilfe von Deep Learning(HMD Praxis der Wirtschaftsinformatik: Vol. 56, No. 5, 2019) Heinrich, Kai; Zschech, Patrick; Möller, Björn; Breithaupt, Lukas; Maresch, JohannesDie voranschreitende Digitalisierung revolutioniert sämtliche Wirtschaftszweige und bringt somit auch langfristige Veränderungen für den landwirtschaftlichen Sektor mit sich, wo auf Basis intelligenter Informationssysteme zahlreiche Daten gesammelt und im Zuge neuer Geschäftsmodelle ausgewertet werden. Vor diesem Hintergrund präsentiert der vorliegende Beitrag eine Big-Data-Analytics-Fallstudie aus dem Bereich des Weinanbaus, wo mithilfe von mobilen Aufnahmegeräten umfangreiches Bildmaterial aufgezeichnet wurde, um eine automatisierte Objekterkennung zur Unterstützung von operativen Winzertätigkeiten, wie zum Beispiel das Zählen von Reben, die Identifikation von Rebfehlstellen oder die Prognose von potentiellem Erntegut, realisieren zu können. Hierbei bestand die Herausforderung unter anderem darin, landwirtschaftlich relevante Weinobjekte wie Reben, Trauben und Beeren über die einzelnen Hierarchieebenen hinweg erkennen zu können und diese auch in Bezug auf bewegtes Bildmaterial folgerichtig zu zählen. Zur Bewältigung derartiger Herausforderungen werden einige Lösungsansätze vorgestellt, die auf modernen Deep-Learning-Verfahren der bildbasierten Objekterkennung basieren. Der Beitrag wird abgerundet mit einer Diskussion und Implikationen für analytische Anwendungen in der landwirtschaftlichen Praxis. The transformation towards a digitized world introduces major changes to all economic sectors, among them the sector of agriculture, where intelligent information systems help to gather and analyze vast amounts of data to provide new business functions and models. Given this background, this article describes a big data analytics case study from the field of viticulture, where extensive image material was recorded using mobile recording devices in order to implement automated object detection to support operational vineyard activities, such as counting vines, identifying missing plants or predicting potential harvests. One of the challenges here was to correctly identify relevant wine objects such as vines, grapes and berries across their different hierarchical levels and to consistently count them in relation to moving image material. The authors provide a solution to those challenges by designing a data analysis process based on a deep learning framework for object detection. Additionally, the results as well as implications for the application of the proposed models in the field of agrarian management are discussed at the end of the article.
- KonferenzbeitragWorüber reden die Kunden? – Ein modelbasierter Ansatz für die Analyse von Kundenmeinungen in Microblogs(Workshop Gemeinschaften in Neuen Medien 2011, 2011) Schieber, Andreas; Sommer, Stefan; Heinrich, Kai; Hilbert, AndreasIm Social Commerce entwickeln sich die Kunden zu einer bedeutenden Informationsquelle für Unternehmen. Die Kunden nutzen die Kommunikationsplattformen des Web 2.0 (z.B. Twitter), um ihre Meinungen und Erfahrungen über Produkte zu äußern. Diese Diskussionen können sehr wichtig für die Entwicklung von Produkten eines Unternehmens sein. Ein modellbasierter Ansatz soll es einem Unternehmen ermöglichen, die Meinungen zu seinen Produkten in Microblogs zu betrachten. Der erste Schritt dafür ist die Erkennung von Themen in einem spezifischen Kontext. In einem weiteren Schritt müssen die zu den Themen korrespondierenden Einträge bezüglich der geäußerten Meinungen analysiert werden. Für die Erkennung der Themen kommt ein Verfahren zum Einsatz, das auf der Latent Dirichlet Allocation basiert. Das Verfahren identifizierte eventbasierte Themen im Zusammenhang mit den 3D-TV-Anlagen von Sony.