Auflistung nach Autor:in "Jugel, Dierk"
1 - 10 von 11
Treffer pro Seite
Sortieroptionen
- TextdokumentAdaptive Digitale Enterprise Architekturen für Big Data und Cloud-Systeme(Informatik 2014, 2014) Zimmermann, Alfred; Sandkuhl, Kurt; Schmidt, Rainer; Jugel, Dierk; Wisotzki, Matthias; Möhring, MichaelBig Data und Cloud Systeme werden zunehmend von mobilen, benutzerzentrierten und agil veränderbaren Informationssystemen im Kontext von digitalen sozialen Netzwerken genutzt. Metaphern aus der Biologie f\?r lebendige und selbstheilende Systeme und Umgebungen liefern die Basis f\?r intelligente adaptive Informationssysteme und f\?r zugehšrige serviceorientierte digitale Unternehmensarchitekturen. Wir berichten \?ber unsere Forschungsarbeiten \?ber Strukturen und Mechanismen adaptiver digitaler Unternehmensarchitekturen f\?r die Entwicklung und Evolution von serviceorientierten $\dots $kosystemen und deren Technologien wie Big Data, Services \& Cloud Computing, Web Services und Semantikunterst\?tzung. F\?r unsere aktuellen Forschungsarbeiten nutzen wir praxisrelevante SmartLife-Szenarien f\?r die Entwicklung, Wartung und Evolution zukunftsgerechter serviceorientierter Informationssysteme. Diese Systeme nutzen eine stark wachesende Zahl externer und interner Services und fokussieren auf die Besonderheiten der Weiterentwicklung der Informationssysteme f\?r integrierte Big Data und Cloud Kontexte. Unser Forschungsansatz beschŠftigt sich mit der systematischen und ganzheitlichen Modellbildung adaptiver digitaler Unternehmensarchitekturen - gemŠ{\S} standardisierter Referenzmodelle und auf Standards aufsetzenden Referenzarchitekturen, die f\?r besondere Einsatzszenarien auch bei kleineren Anwendungskontexten oder an neue Kontexte einfacher adaptiert werden kšnnen. Um Semantik-gest\?tzte Analysen zur Entscheidungsunterst\?tzung von System- und Unternehmensarchitekten zu ermšglichen, erweitern wir unser bisheriges Referenzmodell f\?r IT- Unternehmensarchitekturen ESARC {\Dj} Enterprise Services Architecture Reference Cube {\Dj} um agile Mechanismen der Adaption und Konsistenzbehandlung sowie die zugehšrigen Metamodelle und Ontologien f\?r Digitale Enterprise Architekturen um neue Aspekte wie Big Data und Cloud Kontexte. 417 Informationen, Daten und Wissen sind heute zentrale Bestandteile unserer tŠglichen AktivitŠten. Soziale Netzwerke, mobile GerŠte wie Smart Devices und intelligente Autos zeigen Aktuelle Beispiele einer allgegenwŠrtigen informationsorientierten Vision, die wir in unserem Forschungsszenario SmartLife nennen. Nach [Hs04] nennen wir die Sammlung von adaptiven Service-orientierten Unternehmensarchitekturen zusammen mit den zugehšrigen Business- und Software-Services f\?r zugehšrige Informationssysteme ein digitales $\dots $kosystem. In unserem VerstŠndnis der Vision zu digitalen $\dots $kosystemen [Ti14] sind selbstoptimierende Systeme mit selbstheilenden Eigenschaften von verteilten Service-orientierten Umgebungen mit anpassungsfŠhigen Service-orientierten Unternehmensarchitekturen fest verankert. Die Entwicklung solcher Anwendungen integriert Web-Services, Cloud Computing und Big Data Management, sowie spezifische Frameworks und Methoden der Semantik-Unterst\?tzung f\?r neue Systemund Software- Architekturen [Es13] und [Am11]. Betrachten wir zum Beispiel den Fahrer eines k\?nftigen intelligenten Autos. Ein Warnlicht auf dem Armaturenbrett zeigt wŠhrend einer Fahrt auf der Autobahn eine Ausnahmesituation an. Er wŠhlt 'untersuchen' und die SmartLife-Anwendung des Autos sucht den Fehlercode und zeigt an, welche Fahrzeugkomponente die Warnung ausgelšst hat. Das System sucht dann mehrere Online-Datenbanken ab, welche Informationen der Autohersteller als auch die Service-Historien anderer Fahrzeuge zum Ausnahmefall der signalisierten Komponente analysiert. Die SmartLife-Anwendung fasst die Ergebnisse zusammen und empfiehlt einen sofortigen Austausch der Komponente, sowie mehrere Anbieter und \?berpr\?ft deren Inventar. Der Fahrer hat die Wahl, einen Servicetermin in der Werkstatt gleich zu vereinbaren oder diese Komponente in einem Online-Shop zu erwerben und selber auszutauschen. Dieses Anwendungsszenario ist ein Beispiel f\?r eine servicebasierte und semantisch erweiterte Anwendung f\?r SmartLife, die auf neue adaptive Digitale Enterprise Architekturen, Graph-Analytik, Big Data Management, Services und Cloud-Computing aufsetzt. Die komplex miteinander verwobenen technologischen und wirtschaftlichen Dimensionen von Systemen zur Unterst\?tzung der MobilitŠt, von sozialen Netzwerken, von fallbasiertem GeschŠftsprozessmanagement und Dienstleistungen, dem Rechnen mit gro{\S}en Daten in Cloud-Umgebungen wirken sich unmittelbar auf anpassungsfŠhige Service-orientierte System- und Unternehmensarchitekturen f\?r SmartLife- $\dots $kosysteme aus. WŠhrend die fachliche Perspektive stŠrker auf intelligent bewertbare und besser steuerbare AnsŠtze und Strukturen der GeschŠftstransformation setzt, ist die technologische Perspektive moderner Informationssysteme vielfŠltiger. Wichtig ist nicht nur die FŠhigkeit leistungsgerechte, prozessintegrierte und serviceorientierte Informationssysteme effizient zu entwickeln, sondern diese FŠhigkeit auch durch kostenoptimierte Betriebsperspektiven mit Cloud-Services und Big Data zu ergŠnzen. Leistungsstarke smarte Unternehmen erweitern gegenwŠrtig ihre FŠhigkeiten, um systematisch ihr Business-Operating-Modell [Ro06] mittels digitaler System- und Unternehmensarchitekturen als Teil der architektonischen IT-Governance [We04] im Sinn optimierter Kosten und Leistungen systematisch zu bewŠltigen. In unserer aktuellen Forschung erweitern wir unsere erste Version der ESARC - Enterprise Services Architecture Reference Cube [Zi12], [Zi13b] hin zu einer adaptiven Digitalen Enterprise Architektur f\?r Big Data und Cloud Kontexte. ESARC ist eine EA- 418 Referenzarchitektur und formuliert einen ganzheitlichen Klassifikationsrahmen $(Framework)$ f\?r die Analyse (Assessments), Bewertung, Optimierung, Neugestaltung und Transformation von Service-orientierten Unternehmensarchitekturen, der zugehšrigen Systeme, der Fachlichkeit und Technologien. Unternehmensarchitekturen f\?r Services \& Cloud Computing definieren heute ein Einsatzfeld, das sich auf die Erschlie{\S}ung von Potenzialen und das Management von VerŠnderungen fokussiert, die sich durch die zunehmende Verbreitung von Big Data, Cloud- und Service-basierten Architekturen ergeben. Hier besteht verstŠrkt der Bedarf der Koordination zwischen Strategieanforderungen, neuen GeschŠftsanforderungen, technologischen VerŠnderungen und einer Landschaft von Projekten, BebauungsplŠnen und Kostenoptimierungen. Neue komplexere Produkte und Dienstleistungen erfordern eine effiziente und leistungsstarke EA-Funktion. Daf\?r passend ausgewŠhlte und parametrierte EAM-Tools sollten durch ergŠnzende methodische Instrumente und ein geeignetes Wissen \?ber Digitale Enterprise Architekturen bei allen fachlich und technologisch aufgestellten Beteiligten f\?hren. Eine EA-Referenzarchitektur kann als Grundlage dieser neuen Positionierung von EAM in Unternehmen, aber auch als Handlungsgrundlage f\?r die Weiterentwicklung von EAM-Werkzeugen und Methoden bei Herstellern und Partnern betrachtet werden. Eine derartige EA Referenzarchitektur muss konsequent auf die neuen Mšglichkeiten von Big Data, Analytics und Architekturen f\?r Services \& Cloud Computing angepasst werden. Im vorliegenden Aufsatz wird der durch theoretische Vorarbeiten und praktische Szenarien erprobte Weg zu einer adaptiven Serviceorientierten EA-Referenzarchitektur unter Ber\?cksichtigung von Services \& Cloud Computing beschrieben. Unser Hauptbeitrag umfasst einen erweiterten Ansatz f\?r EAM (Enterprise Architecture Management) durch die systematische Zusammensetzung und Integration von Architektur-Metamodellen, Ontologien, Views und Viewpoints f\?r adaptive Digitale Enterprise Architekturen - in enger Ausrichtung auf Services \& Cloud Computing und Big Data-Architekturen. Wir berichten \?ber Erweiterungen unserer Forschungsarbeiten zu ESARC [Zi12], [Zi13b], [Es13b] und zur Semantik-gest\?tzten Software-Wartung [Wi12], [Es13a] Evolution von Service-orientierten Anwendungen in Verbindung mit neuen Entwicklungen von EAM [Jo14] und Plattform- $\dots $kosystemen [Ti14]. Wir integrieren gegenwŠrtig Perspektiven der adaptiven Software-Modelle [Sh11], [He06], [Sa06], [Yo02] und [Fe10] f\?r flexibel verŠnderbare Unternehmensarchitekturen auch f\?r KMUs und f\?r die Unterst\?tzung von GeschŠftstransformationsprozessen durch EAM und erweitern diese FlexibilitŠt um Aspekte der Datenkonsistenz [Bt11] und Big Data [Br13]. ZusŠtzlich zu dem Stand der Wissenschaft integrieren wir derzeit EAM-Metamodelle von Industriepartnern und aus EA-Tools. Das folgende Kapitel 2 beschreibt unseren Ansatz f\?r eine EA-Referenzarchitektur f\?r SmartLife- $\dots $kosysteme auf Basis des erweiterten ESARC. Kapitel 3 skizziert die synergetische Basis der EA-Modellintegration, grundlegende Adaptionsmechanismen und die Konsistenzbehandlung von EA-Modellen. Kapitel 4 beschŠftigt sich mit Metamodellen und Ontologien als Grundlage einer entscheidungsunterst\?tzenden formalen Semantik f\?r die Analyse, Bewertung und Navigation zwischen den EA- Konzepten. Schlie{\S}lich fassen wir im Kapitel 5 unsere Schlussfolgerungen, wesentliche EA-Trends und PlŠne f\?r die Zukunft zusammen. 419 In Bereichen, in denen FlexibilitŠt und AgilitŠt des GeschŠfts flexibel unterst\?tzt werden sollen, ist Services Computing [Zh07] der Ansatz der Wahl, um FŠhigkeiten von verteilten Systemen zu organisieren und agil zu nutzen. Innovationsorientierte Unternehmen haben in den letzten Jahren Service-orientierten Architekturen eingef\?hrt, um die L\?cke zwischen GeschŠft und IT zu schlie{\S}en und gleichzeitig neue Potentiale wie Cloud Computing, Big Data, Analytics u. a. strategisch zu erschlie{\S}en. Die Vorteile von Service-orientierten Architekturen [Ma06] wie FlexibilitŠt, Prozessorientierung, Time-to-Market und agile Innovation sind prinzipiell anerkannt, jedoch leider noch nicht ganz gut beherrscht. Digitale Unternehmensarchitekturen oder klassisch EAM {\Dj} Enterprise Architecture Management - adressieren die Gesamtsicht der Architekturen aus fachlicher und technologischer Sicht. Der Kern unserer erweiterten EA-Referenzarchitektur ist ESARC - Enterprise Services Architecture Reference Cube [Zi12], [Zi13a], [Zi13b] (siehe Abbildung 1) prŠzisiert bestehende architektonische Standards und Frameworks f\?r EAM - Enterprise Architecture Management [Ro06], [TG11] und [AM12] und erweitert diese Architekturstandards f\?r Services Computing, Cloud Computing und Big Data. ESARC ist unser eigens entwickeltes Architektur-Referenzmodell f\?r ein Service-orientiertes EAM, das einen ganzheitlichen Klassifikationsrahmen mit acht integrierten Architekturbereichen definiert. ESARC abstrahiert von einem konkreten Business- Szenario oder spezifischen Technologien, ist aber offen f\?r konkrete architektonische AusprŠgungen ausgelegt. Das OASIS-Referenzmodell f\?r Service Orientierte Architekturen [MK06] definiert einen abstrakten Rahmen f\?r unsere Vorstellung von Referenzarchitekturen [Ba13], [Es08] und [OG11a]. Referenzmodelle sind konzeptionelle Modelle der funktionalen Zerlegung eines Systems in Modellelemente zusammen mit den Datenfl\?ssen zwischen diesen Elementen. Das Referenzmodell f\?r Service-orientierte Architektur von OASIS [MK06] definiert grundlegende generische Elemente und ihre Beziehungen einer Serviceorientierten Architektur. Dieses Referenzmodell ist kein Standard, bietet aber eine gemeinsame Semantik f\?r spezifischere Referenzarchitekturen. Referenzarchitekturen, in [Es08] und [OG11a], sind spezialisierte Modelle eines Referenzmodells. Referenzarchitekturen entstehen durch Abbildung von Referenzmodellen zu Software- Komponenten, die kooperativ die FunktionalitŠt der Referenzmodelle implementieren. Oftmals wird diese Abbildung von Referenzmodellen zu Referenzarchitekturen durch Architekturmuster unterst\?tzt. Referenzarchitekturen wenden dar\?ber hinaus eine Sammlung von geeignet kombinierten Architekturstilen wie Client/Server, REST, Web- Services, u. a. an. The Open Group Architecture Framework [TG11] und ArchiMate [AM12] liefern wesentliche Standards f\?r erweiterte Service-orientierten DomŠnen (Abbildung 1) von ESARC [Zi13a], [Zi13b] wie: Architecture Governance, Architecture Management, Business \& Information Architecture, Technology Architecture, Operation Architecture, Cloud Services Architecture und Security Architecture. ESARC bietet mit seinem Klassifikationsframework, Metamodellen und EA-Patterns eine kohŠrente Hilfe f\?r zyklische Assessments, EA-Analytik, Optimierung und Neuausrichtung der multiperspektivischen ArchitekturqualitŠt von adaptiven Digitalen Enterprise Architekturen. 420 Abbildung 1: ESARC {\Dj} Enterprise Services Architecture Reference Cube Architecture Governance [Zi13a], [Zi13b] formuliert den Architektur-Governance- Zyklus [Ro06]. Er setzt den abstrakten Rahmen f\?r konkrete Governance-AktivitŠten innerhalb des Unternehmens bzw. f\?r die Entwicklung von Produktlinien durch grundlegende Management-AktivitŠten: Planen, Definieren, Umsetzen, Messen, Kontrollieren. Das zweite Ziel ist es, Compliance-Regeln f\?r die Architektur-Governance zur Einhaltung interner und externer Standards zu setzen und zu \?berwachen. Unternehmensarchitekten und Software-Architekten verbindet ein anspruchsvoller Pfad, der von der GeschŠftsund IT-Strategie ausgeht und bis zur Definition und $\dagger $berwachung der Architekturlandschaft von miteinander verkn\?pften GeschŠftsbereichen, Produkten, Dienstleistungen, GeschŠftsprozessen, Anwendungssystemen und Technologien f\?hrt. Architecture Governance setzt Regeln f\?r die $\dagger $bertragung von Verantwortung an handelnde Akteure, legt Strukturen und Verfahren f\?r das Architecture Governance Board fest und definiert wesentliche Regeln f\?r die Kommunikation. Folgende Begriffe f\?r Architecture Governance wurden im Modell festgelegt: Service-Strategie, Lebenszyklus- Management f\?r alle markanten ZustŠnde von Architektur-Artefakten, Service-Sicherheit, Service-Tests und $\dagger $berwachung, ServicevertrŠge, Service-Registries, Wiederverwendung von Services, Service-Verantwortlichkeiten, Service-Definition und Versionsverwaltung. Die ãBusiness and Information Reference Architecture {\Dj} BIRAÒ [Zi13a], [Zi13b] liefert die eindeutige Informationsquelle und einen umfassenden Wissensspeicher der fachlichen Konzepte, aus denen konkrete Unternehmensinitiativen und Systeme entwickeln werden. Operative fachliche und technologische Anforderungen m\?ssen nat\?rlicherweise noch durch jedes Umsetzungsprojekt ergŠnzt werden. Dieses Wissen ist modellbasiert und definiert ein integriertes Enterprise Business Modell, das auch Organisationsmodelle und GeschŠftsprozesse umfasst. Die BIRA eršffnet eine Verbindung (inter-architectural dependency) zur Software-Architektur der Informationssysteme, zur Technology Architecture der IT-Infrastrukturen, zur Betriebsarchitektur, zur Cloud-Services Architecture und zur Sicherheitsarchitektur. Die BIRA ermšglicht ein abgestimmtes Business-IT Alignment durch mehrfach integrierte Modelle (intra-architectural dependency) und Angaben zur Businessund Informationsstrategie, beteiligte Organisationen und Einheiten, GeschŠftsrollen, wesentliche Anforderungen ans GeschŠft und f\?r zugehšrige Informationssysteme, wichtige GeschŠftsprozesse, GeschŠftsregeln, GeschŠftsprodukte, Dienstleistungen und die damit verbundenen Steuerungsund Kontrollinformationen. 421 Die ãInformation Systems Reference Architecture {\Dj} ISRAÒ [Zi13a], [Zi13b] ist die Software-Referenzarchitektur der Anwendung und enthŠlt wesentliche anwendungsspezifische Typen von Services, die durch ein Schichtenmodell von aufeinander aufbauenden Schichten geordnet wurden. Die KernfunktionalitŠt der Domain-Services wurde mit Interaktionsservices und GeschŠftsprozessservices der Kundenorganisation verbunden. Der Aufbau der ISRA (in Abbildung 2) ber\?cksichtigt aktuelle Standards f\?r Service-orientierte Referenzmodelle [MK06] und Referenzarchitekturen [Es08] und [AM12]. Um Big Data und Cloud Computing Technologien zu unterst\?tzen, haben wir in Abbildung 2 einen einheitlichen Satz von 14 aufeinander aufbauenden Servicetypen kategorisiert. Abbildung 2: ESARC {\Dj} Information Systems Reference Architecture Informationsdienste f\?r Unternehmensdaten [Zi13a], [Zi13b] sind datenzentrische elementare Komponenten, die den Zugang zu persistenten GeschŠftsobjekten in der Regel \?ber Datenbanken und andere Speicher realisieren. In der NŠhe dieser Informationsdienste befinden sich Services zur Verwaltung der Datenkontexte, wie diese durch Grundmechanismen der Technologiearchitektur ermšglicht werden, wie beispielsweise Fehlerbehandlungsmechanismen, Transaktionsmechanismen f\?r kurze und lange evtl. verteilte Transaktionen, Kompensationsdienste sowie weitere Mechanismen zur annŠhernden oder exakten Konsistenzbehandlung. Process Services [Zi13a], [Zi13b] sind lang laufende Services, die Task Services und Information Services in Workflows zusammenbauen (orchestrieren), um die prozedurale Logik der GeschŠftsprozesse zu implementieren. Prozessdienste kšnnen Prozessregeldienste (Process Rule Services) aktivieren, um den Teil der unstabilen (d. h. verŠnderlichen) kausalen Entscheidungslogiken von Gateways auszuklammern und damit einfacher verŠnderbare (agile) GeschŠftsprozesse zu ermšglichen. Prozessdienste werden von Interaktionsdiensten oder spezifischen Diagnostik-Services oder Monitoring-Services aktiviert. Prozess-Services verwalten oft verteilten Daten- und AnwendungszustŠnde indirekt durch die Aktivierung von Task Services und/oder Informationsdiensten. Wenn Prozessdienste in der interaktiven Workflows teilnehmen, m\?ssen sie lange Transaktionen unterst\?tzen und eventuelle Ausnahmen / Fehler durch Kompensationslogiken behandeln. 422 Big Data [Be13] und [Sc14] ist ein neueres Verarbeitungskonzept, um Sammlungen von sehr gro{\S}en Datenmengen unterschiedlicher Herkunft und Ausgangsstruktur in einer hohen Geschwindigkeit zu verarbeiten. Vor allem im Bereich der Technologieentwicklung und IT sowie im Marketing und Vertrieb liegen demnach die grš{\S}ten Nutzenpotenziale. Zur Analyse gro{\S}er Datenmengen unterschiedlichster Struktur im Rahmen von Big Data eignen sich traditionelle Verarbeitungswerkzeuge kaum. SmartLife Anwendungen erfordern spezielle Umgebungen f\?r Big Data. SmartLife Anwendungen, wie das Szenario in diesem Papier zeigte, werden typischerweise mehrere Online-Datenbanken gleichzeitig abfragen. Um solche Anfragen zu behandeln werden dezentrale Parallelarchitekturen, die Daten \?ber mehrere Verarbeitungseinheiten verteilen, benštigt. Big Data Bearbeitungsfunktionen wie MapReduce [De04] werden benštigt, um diese Art von Anfragen und Daten f\?r SmartLife -Anwendungen parallel zu bearbeiten. MapReduce, welches auf dem Hadoop-Framework verwendet wird, zerst\?ckelt die Abfragen auf kleine Segmente und verteilt sie auf parallelen Knoten zur Bearbeitung. Die Ergebnisse werden dann von den parallelen Knoten gesammelt, verdichtet und weiterbearbeitet, z. B. analysiert. Cloud-Architekturen (Integrationskomponenten in Abbildung 3) befinden sind noch in Entwicklung und sind noch nicht so weit, ihr volles Potenzial bei der Integration von Enterprise Architekturen mit Services Computing und Cloud Computing zu erreichen. Die ãCloud Services Reference ArchitectureÒ st\?tzt sich auf eine Referenzmodell-basierte Synthese von aktuellen Standards und Referenzarchitekturen aus [Li11] , [Be11] und [CS09]. Die heutige Entwicklung von Technologien und Standards f\?r Cloud Computing wŠchst sehr schnell und bietet eine zunehmend gut standardisierte Basis f\?r Cloud- Produkte und neue Service-Angebote. Cloud Service Cloud Service Provider Cloud Service Cloud Service Provider Consumer Creator Cloud Cloud Cloud Services Common Cloud Management Platform (CCMP) Service Broker Service Layer Consumer Existing \& 3rd party Business-Process- SaaS Cloud Service services, Partner as-a-Service Management Ecosystems Service Cloud PaaS Service Intermediation Integration Cloud Business Tools Sof tware-as-a-Service Auditor IaaS Support t y Operational Business ri Service a c y Service Support Support Creation Aggregation Services Services Tools Security Resource Abstraction and e c u r i v (OSS) (BSS) Provisioning/ P Audit S Platf orm-as-a-Service Control Layer Configuration Service Consumer Privacy Arbitrage In-house IT Physical Resource Layer Impact Audit Portability/ Inf rastructure-as-a-Service Hardware Interoperability Performance Facility Audit Inf rastructure Cloud Carrier Security, Resiliency, Performance \& Consumability Governance Abbildung 3: Integrating Cloud Computing Reference Architectures with SOCCI Die NIST Cloud Computing Referenzarchitektur [Li11] definiert den Standard und damit das konzeptuelle Grundmodell f\?r Cloud Computing aus der Perspektive folgender \? Rollen: Cloud Consumer, Cloud Provider, Cloud Auditor, und Cloud Broker. Der NIST- Standard definiert ferner folgende Bereitstellungsmodelle: Private Cloud, Community Cloud, Public Cloud, und Hybrid Cloud. Cloud Computing definiert wesentliche 423 Eigenschaften einer massiv parallelen virtualisierten Serverlandschaft: On-Demand-Self- Services, Broad Network Access, Resource Pooling, Rapid Elasticity, und Measured Services. Der grundlegende Teil der NIST-Referenzarchitektur formuliert folgende Cloud-Service-Modelle: IaaS - Infrastructure as a Service, PaaS - Platform as a Service , und SaaS - Software as a Service. Einige Erweiterungen des NIST-Standards [Be11] liefern praktische ErgŠnzungen f\?r die direktere Unterst\?tzung moderner Business-Architekturen durch BPaaS - Business Process as a Service und ermšglichen durch ein durchgehendes Service-Konzept eine direkte Unterst\?tzung von Service-orientierten Unternehmensarchitekturen. Die IBM Cloud Computing Reference Architecture erweitert die Standardisierung von NIST durch Best-Of-Industry Branchenwissen und Cloud-Produktspezifikationen auf Basis eigener Technologie-Stacks, Middleware, sowie Service-orientierte Entwicklungs- und Laufzeitplattformen [Be11]. Die IBM Cloud Computing -Referenzarchitektur [Be11] hat den grundlegenden NIST-Standard f\?r Cloud Computing [Li11] mit der SOA- Referenzarchitektur [OG11a] der Open Group integriert: Alle Cloud- Services sind demnach SOA-Services, aber nicht alle SOA-Services sind auch Cloud-Services. Die SicherheitsergŠnzungen aus den CSA Security Guidelines for Critical Areas of Focus in Cloud Computing [CS09] definiert eine auf Jericho-Sicherheitsmechanismen fokussierte Service-orientierte Referenzarchitektur f\?r Cloud Computing und integriert die Managementperspektiven aus Standards wie ITIL und TOGAF [TG11]. Das SOCCI - Service-Oriented Cloud Computing Framework [OG11b] umfasst eine grundlegende Zusammenstellung f\?r eine integrierte Reihe von Infrastrukturkomponenten IaaS f\?r Cloud Computing. Im Grunde ist es die Synergie von Service-orientierten Architekturen und Cloud Computing Architekturen durch einen konsequenten As-a- Service - Mechanismus f\?r alle Arten von Cloud-Services. Die grundlegenden Eigenschaften eines Service-orientierten Infrastruktur (SOI) sind: Business-Driven Infrastructure On-Demand, Operational Transparency, Service Measurement, und Consumer Provider Model. Das SOCCI - Service-Oriented Cloud Computing Framework ist die Erweiterung der in die SOA-Referenzarchitektur [OG11a] abgebildeten Serviceorientierten Infrastruktur (SOI). Die SOI-Framework ist die Schicht \?ber der Basisinfrastruktur und definiert wesentliche Elemente der SOCCI: Compute, Network, Storage, Facilities. SOCCI erweitert diese Grundelemente durch Basisbausteine (Building Blocks) zur flexiblen Unterst\?tzung von Management und Betrieb von Cloud Infrastrukturen. 3 Adaptionsmechanismen Die Integrationsmethode ESAMI {\Dj} Enterprise Services Architecture Metamodel Integration {\Dj} [Zi13a] wird gegenwŠrtig durch laufzeitaktive Adaptionsmechanismen erweitert. Um adaptive Enterprise Architekturen zu unterst\?tzen, wurden in [Jo14] agil steuerbare Analyse-Metamodelle und zugehšrige Architektur-Viewpoints eingef\?hrt und auf folgende QualitŠtskriterien zur Unterst\?tzung der AgilitŠt und Adaption von Architekturen ausgerichtet: Anpassbarkeit der Anwendungen, Genauigkeit der Daten, Verwendbarkeit der Anwendungssysteme, Service-Verf\?gbarkeit, InteroperabilitŠt, Kosten und Nutzen. Plattform $\dots $kosysteme werden in [Ti14] systematisch untersucht und mit den wichtigsten strategischen Treibern f\?r die Systementwicklung und die Evolution der $\dots $kosysteme verkn\?pft. Hauptkonzepte adaptiver Enterprise Architekturen f\?r digitale $424 \dots $kosysteme basieren auf Mikroarchitekturen, die den Kontext von Internet-Systemen erfordern. Bevorzugte Mechanismen der Modularisierung von Systemen st\?tzen sich auf Mechanismen zur Entkopplung von Subsystemen und auf die von Standardisierung von Schnittstellen. Architektur Governance-Modelle zeigen den Weg, um anpassungsfŠhige $\dots $kosysteme zu ermšglichen und um die Evolution von Plattform und Systemen zusammenzuf\?hren. Enterprise Architekturen f\?r KMUs [Bl13] fokussieren auf sparsame und effiziente adaptive Funktionen der EA wie: AgilitŠt, um die $\dots $kosysteme an sich verŠndernde Umgebungen rasch und flexibel anzupassen, Strategie Planung und Entscheidungsunterst\?tzung, kontinuierliches Ausrichtung des GeschŠfts auf IT und umgekehrt (Business / IT-Alignment), KomplexitŠtsmanagement, Integration von GeschŠftsprozessen, Vereinheitlichung der Daten und Datenintegration, Verkn\?pfung der Daten mit externen Partnern, sowie die kontinuierliche Wertsteigerung der IT. Der Schwerpunkt des ADaPPT [Sh11] EA-Ansatzes ist in erster Linie auf vier strategische EA Domain Elementen ausgerichtet: Menschen, Prozesse, Daten, und Technologien. Um ein adŠquates IT / Business Alignment f\?r eine leistungsstarke Digitale Enterprise Architektur zu erreichen, sind drei QualitŠtsperspektiven gemŠ{\S} unserer Forschung wesentlich und daher durch geeignete QualitŠtskriterien zu differenzieren: (i) IT- Systemeigenschaften: Leistung, InteroperabilitŠt, Verf\?gbarkeit, Benutzerfreundlichkeit, Genauigkeit, Wartbarkeit und Eignung; (ii) GeschŠftseigenschaften: FlexibilitŠt, Effizienz, Wirksamkeit, Integration und Koordination, Entscheidungsunterst\?tzung, Steuerung und FolgeaktivitŠten, und Organisationskultur; und schlie{\S}lich (iii) Governance-QualitŠten: Planung und Organisation, Akquisition und Implementation, Bereitstellung und Unterst\?tzung, Monitoring und Evaluierung. Aus der Sicht der Modellierung adaptiver Metamodelle f\?r adaptive Digitale Enterprise Architekturen haben wir zusŠtzliche Anregungen aus dem ãAdaptive Object Model Architectural StyleÒ, von [Yo02] \?bernommen werden, um die FlexibilitŠt der Systeme zu ermšglichen und Systemkonfiguration zur Laufzeit anpassen zu kšnnen. Daf\?r werden GeschŠftsregeln explizit dargestellt und au{\S}erhalb des Programmcodes - und damit einfach verŠnderbar - abgelegt. Das Objektmodell im festen Code besteht lediglich aus einem Interpreter des Objektmodells der Nutzer. Das konfigurierbare Wissen ist au{\S}erhalb des Programms in den Regeln gespeichert. Dieser Semantikgest\?tzte Ansatz ermšglicht, dass Architekten und Entwickler {\Dj} in ausbaubarere Form sogar Programme selbst - das adaptive Objektmodell flexibel und einfach zur Laufzeit anpassen kšnnen. Der Ansatz der ãCore Patterns of Object-Oriented Meta-ArchitecturesÒ aus [Fe10] ermšglicht reflektive Architekturen, die in der Lage sind die Strukturen der Programme zur Laufzeit zu inspizieren und diese Strukturen und das Verhalten der Programme zur Laufzeit dynamisch anzupassen. 4 Schlussfolgerungen und Trends Wir haben in diesem Beitrag \?ber laufende Arbeiten zur Konzeption neuartiger adaptiver Digitaler Enterprise Architekturen f\?r Big Data und Cloud Systeme berichtet. Daf\?r haben wir auf Basis unserer Vorarbeiten und des State of Art die Referenzarchitektur ESARC um adaptive Elemente erweitert, um insbesondere Transformationsprozesse f\?r neue GeschŠftsmodelle und Informationssysteme sowohl bei gro{\S}en wie auch bei kleinsten Unternehmen agil durch EAM zu unterst\?tzen. Daf\?r haben wir unsere Metamodell-basierte Integrationsmethode konsequent auf neue 425 Architekturstandards sowie auf den State of Art \& Practice ausgerichtet und damit eine einfach zu handhabende Basis f\?r weitere EA-Modellintegrationen geschaffen. In unserer aktuellen Forschung legen wir ein gro{\S}es Augenmerk auf die schnelle Anpassbarkeit der EA an neue Kontexte und erforschen daher wesentliche Adaptionsmechanismen f\?r EA. Adaption bedeutet immer potentielle Inkonsistenz der Modelle und der EA-Information. Daher adressieren wir ebenfalls neue Aspekte der Konsistenzbehandlung und setzen hierf\?r Erfahrungen aus der Big Data Analytics und aus Vorarbeiten \?ber Architekturen f\?r Services \& Cloud Computing ein. Der Weg zu intelligenten Systemen liefern uns Metamodelle und zugehšrige Ontologien, um eine geeignete Form der EA-WissensreprŠsentation f\?r neuartige und flexiblere Digitale Enterprise Architekturen zu ermšglichen. Aus den skizzierten Lšsungselementen folgen interessante weiterf\?hrende Themen f\?r Service-orientierte EA-Referenzarchitekturen: Ausrichtung auf strategierelevante Kostenund Optimierungsthemen, Unterst\?tzung organisatorischer Neuordnungen und systematische VerŠnderungsprozesse, EAM f\?r Innovationsmanagement und Risikomanagement, erweiterte Referenzmodelle und EA-Viewpoint-Models, WissensreprŠsentation und Semantikverarbeitung f\?r EA, Visualisierung, Interaktion, Simulation und neue, schlanke und effiziente Verfahren und Mechanismen der Gestaltung, Nutzung und Entscheidungsunterst\?tzung in EA-Kollaborationsprozessen. Literatur [Am11] Allemang, D.; Hendler, J.: Semantic Web for the Working Ontologist {\Dj} Effective Modeling in RDFS and OWL. Morgan Kaufmann, 2011. [AM12] ArchiMate 2.0 Specification. Open Group Standard, 2012. [Ba13] Bass, C.; Clements, P.; Kazman, R.: Software Architecture in Practice. Addison Wesley, 2013. [Be11] Behrendt, M.; Glaser, B.; Kopp, P.; Diekmann, R.; Breiter, G.; Pappe, S.; Kreger, H.; Arsanjani A.: Introduction and Architecture Overview {\Dj} IBM Cloud Computing Reference Architecture 2.0. IBM 2011. [Bl13] Van Belle, J-P.; Giqwa, L.: The Potential of Enterprise Architectureal Thinking for Small Enterprises: An Exploratory South African Study. International Journal of Advanced Research in Business, Vol. 1, No. 3, pp. 22-29, 2013-14. [Br13] J. J. Berman: Principles of Big Data. Morgan Kaufmann, 2013. [Bt11] Bertossi, L.: Database Repairing and Consistent Query Answering. Morgan \& Claypool Publishers, 2011. [CS09] CSA Cloud Security Alliance: Security Guidance for Critical Areas of Focus in Cloud Computing V2.1. 2009. [De04] Dean, J.; Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. OSDI, pp. 1-13. 2004. [DF09] DoDAF Architecture Framework. Version 2.0, Volume 1, Department of Defense USA, 28 May 2009. 426 [Em09] Emery, D. E.; Hilliard, R.: Every Architecture Description needs a Framework - Expressing Architecture Frameworks Using ISO/IEC 42010. IEEE/IFIP WICSA/ECSA 2009, pp. 31-40, 2009. [Es08] Estefan, J. A.; Laskey, K.; McCabe, F. G.; Thornton, D.: OASIS Reference Architecture for Service Oriented Architecture. Version 1.0, OASIS Public Review Draft 1, 23 April, 2008. [Es13a] El-Sheikh, E.; Reichherzer, T.; White, L.; Wilde, N.; Coffey, J.; Bagui, S.; Goehring, G.; Baskin, A.: Towards Enhanced Program Comprehension for Service Oriented Architecture (SOA) Systems. Journal of Software Engineering and Applications, Vol. 6 No. 9, 2013, pp. 435-445. [Es13b] El-Sheikh, E.; Bagui, S.; Firesmith, D. G.; Petrov, I.; Wilde, N.; Zimmermann, A.: Towards Semantic-Supported SmartLife System Architectures for Big Data Services in the Cloud. Proceedings of the Fifth International Conference on Advanced Service Computing - Service Computation 2013, May 27 {\Dj} June 1, Valencia, Spain, pp. 59-64, 2013. [ES14] Essential Architecture Project. http://www.enterprise-architecture.org, last access: May, 9th, 2014. [Fe10] Ferreira, H. S.; Correia, F. F.; Yoder, J.; Aguiar, A.: Core Patterns of Object-Oriented Meta-Architecture. ACM-PLoP, October 16-18, 2010, Reno/Tahoe, Nevada, USA, 2010. [Go13] Goehring, G.; Reichherzer, T.; El-Sheikh, E.; Snider, D.; Wilde, N.; Bagui, S.; Coffey, J.; White, L.: A Knowledge-Based System Approach for Extracting Abstractions from Service Oriented Architecture Artifacts. IJARAI International Journal of Advanced Research in Artificial Intelligence, Vol. 2, No.3, pp. 44-52, 2013. [He06] Hendrickx, W.; Gorissen, D.; Dhaene, T.: GRID Enabled Sequential Design and Adaptive Metamodeling. IEE
- KonferenzbeitragArchitecture Reference Lab des SOA Innovation Lab(INFORMATIK 2012, 2012) Jugel, Dierk; Falkenthal, Michael; Groß, Hans-Jürgen; Herrmann, Jochen; Piller, Gunther; Zimmermann, AlfredService-orientierte Software-Architekturen wachsen gegenwärtig mit Architekturen für Cloud Computing zusammen. Neue Software-Architekturen sind die strukturelle Basis für zukunftsweisende IT-Unternehmensarchitekturen und zugehörige leistungsstarke Informationssysteme. Das ARL - Architecture Reference Lab - des SOA Innovation Lab und der Hochschule Reutlingen erforscht in einem deutschlandweit ausgerichteten Partnernetzwerk aus Wissenschaft und Wirtschaft - Service-orientierte Software-Architekturen und IT-Unternehmensarchitekturen. Darüber hinaus unterstützt das Architecture Reference Lab Forschungsarbeiten von innovativen Workstreams des SOA Innovation Lab. Das SOA Innovation Lab ist ein bundesweites Netzwerk von Mitgliedsunternehmen, die serviceorientierte Architekturen, Methoden und Werkzeuge des Enterprise Architecture Management und zugehörige Infrastrukturen mit dem Zweck einer wirkungsvollen Anwendung und Integration der Systeme in komplexe Unternehmenslandschaften erforschen.
- KonferenzbeitragA decision-making case for collaborative enterprise architecture engineering(INFORMATIK 2015, 2015) Jugel, Dierk; Kehrer, Stefan; Schweda, Christian M.; Zimmermann, AlfredIn modern times markets are very dynamic. This situation requires agile enterprises to have the ability to react fast on market influences. Thereby an enterprise' IT is especially affected, because new or changed business models have to be realized. However, enterprise architectures (EA) are complex structures consisting of many artifacts and relationships between them. Thus analyzing an EA becomes to a complex task for stakeholders. In addition, many stakeholders are involved in decision-making processes, because Enterprise Architecture Management (EAM) targets providing a holistic view of the enterprise. In this article we use concepts of Adaptive Case Management (ACM) to design a decision-making case consisting of a combination of different analysis techniques to support stakeholders in decision-making. We exemplify the case with a scenario of a fictive enterprise.
- KonferenzbeitragEnterprise architecture management for the Internet of things(Digital Enterprise Computing (DEC 2015), 2015) Zimmermann, Alfred; Schmidt, Rainer; Sandkuhl, Kurt; Jugel, Dierk; Möhring, Michael; Wißotzki, MatthiasThe Internet of Things (IoT) fundamentally influences today's digital strategies with disruptive business operating models and fast changing markets. New business information systems are integrating emerging Internet of Things infrastructures and components. With the huge diversity of Internet of Things technologies and products organizations have to leverage and extend previous enterprise architecture efforts to enable business value by integrating the Internet of Things into their evolving Enterprise Architecture Management environments. Both architecture engineering and management of current enterprise architectures is complex and has to integrate beside the Internet of Things synergistic disciplines like EAM - Enterprise Architecture and Management with disciplines like: services \& cloud computing, semantic-based decision support through ontologies and knowledge-based systems, big data management, as well as mobility and collaboration networks. To provide adequate decision support for complex business/IT environments, it is necessary to identify affected changes of Internet of Things environments and their related fast adapting architecture. We have to make transparent the impact of these changes over the integral landscape of affected EAM-capabilities, like directly and transitively impacted IoT- objects, business categories, processes, applications, services, platforms and infrastructures. The paper describes a new metamodel-based approach for integrating partial Internet of Things objects, which are semi-automatically federated into a holistic Enterprise Architecture Management environment.
- KonferenzbeitragEvolving enterprise architectures for digital transformations(Digital Enterprise Computing (DEC 2015), 2015) Zimmermann, Alfred; Schmidt, Rainer; Jugel, Dierk; Möhring, MichaelThe digital transformation of our society changes the way we live, work, learn, communicate, and collaborate. This disruptive change interacts with all information processes and systems that are important business enablers for the digital transformation since years. The Internet of Things, Social Collaboration Systems for Adaptive Case Management, Mobility Systems and Services for Big Data in Cloud Services environments are emerging to support intelligent usercentered and social community systems. They will shape future trends of business innovation and the next wave of information and communication technology. Biological metaphors of living and adaptable ecosystems provide the logical foundation for self-optimizing and resilient run-time environments for intelligent business services and related distributed information systems with service-oriented enterprise architectures. The present research investigates mechanisms for flexible adaptation and evolution of Digital Enterprise Architectures in the context of integrated synergistic disciplines like distributed service-oriented Architectures and Information Systems, EAM - Enterprise Architecture and Management, Metamodeling, Semantic Technologies, Web Services, Cloud Computing and Big Data technology. Our aim is to support flexibility and agile transformations for both business domains and related enterprise systems through adaptation and evolution of digital enterprise architectures. The present research paper investigates digital transformations of business and IT and integrates fundamental mappings between adaptable digital enterprise architectures and service-oriented information systems.
- KonferenzbeitragKonzeption und prototypische Umsetzung eines Architekturcockpits(Digital Enterprise Computing (DEC 2015), 2015) Wenzel, Christoph; Jugel, Dierk; Cubukcuoglu, Baris; Breitbach, Sebastian; Gorhan, Tobias; Hammer, DanielEAM ist ein holistischer Ansatz, um komplexe IT- und Unternehmensstrukturen darzustellen. Dabei ist es von zentraler Bedeutung diese Strukturen möglichst komplett und übersichtlich zu visualisieren. Ein Ansatz dies zu erreichen ist eine multiperspektivische Darstellung von mehreren Views in einem Architekturcockpit. Dabei können mehrere Views simultan betrachtet und Analysiert werden. Dadurch ist es möglich die Auswirkungen einer Analyse des Views eines Stakeholders simultan aus den Views anderer Stakeholder betrachten zu können um eventuelle Wechselwirkungen zu erkennen und einen allgemeinen Überblick über die Unternehmensarchitektur zu behalten. In dieser Arbeit zeigen wir, von der Konzeption über die Umsetzung bis zu einem Anwendungsbeispiel, wie ein solches Architekturcockpit realisiert werden kann.
- KonferenzbeitragMaturity assessments of service-oriented enterprise architectures with iterative pattern refinement(INFORMATIK 2012, 2012) Falkenthal, Michael; Jugel, Dierk; Zimmermann, Alfred; Reiners, René; Reimann, Wilfried; Pretz, MichaelCurrent practices for assessing maturity of service-oriented enterprise information architectures only provide a sparse metamodel and pattern foundation and were rarely validated. This is a real problem for practical architecture assessments in repeated (cyclic) evaluations of service-oriented systems. In preliminary research we have developed and validated an original pattern language for supporting architecture assessments and optimization of enterprise systems, leveraging and extending base frameworks like the Capability Maturity Model Integration and The Open Group Architecture Framework. Traditionally, patterns are derived after long experience by an expert group of pattern authors. This may lead to a decelerated reuse of available design knowledge. Our approach intends to integrate available knowledge from enterprise information architecture methods, services computing and software architects directly from the beginning of the iterative pattern development and refinement process.
- KonferenzbeitragMetamodell-basierte Integration von Service-orientierten EA-Referenzarchitekturen(INFORMATIK 2013 – Informatik angepasst an Mensch, Organisation und Umwelt, 2013) Zimmermann, Alfred; Sandkuhl, Kurt; Pretz, Michael; Falkenthal, Michael; Jugel, Dierk; Wisotzki, MatthiasEine EA-Referenzarchitektur soll die klare „Blaupause“ der effizienten, leistungsstarken und agilen Gestaltung sowie Nutzung von EAM für jedes Unternehmen sein. Heute ist dies nicht der Fall, weil EA-Referenzarchitekturen meist fehlen und die methodische Praxis von EAM meist nur Tool-zentriert ist. Es wird ein origineller Ansatz zur Metamodel-basierten Integration von EA-Frameworks für eine ganzheitliche Service-orientierte EA-Referenzarchitektur neu in die Diskussion eingebracht. Das Problem ist heute, dass es trotz einiger Standards auf dem Gebiet der IT-Unternehmensarchitekturen und vielfältiger EA-Frameworks keine Service-orientierte Referenzarchitektur für Enterprise Architecture Management gibt, die neuere Möglichkeiten des Services & Cloud Computing hinreichend berücksichtigt. Nach mehr als zehnjähriger Entwicklung der Konzepte für EAM – Enterprise Architecture Management und erster praktischer Reife, aber auch einiger Schwierigkeiten im Umgang mit EAM in der Praxis ist die Zeit heute reif, dass künftig klarere Konzepte, Modelle und Werkzeugparametrierungen eine leistungsstarke Basis für die praktische Arbeit von EAM-Architekturen ermöglichen. Unser Ansatz formuliert – in der Art eines Durchstichs – am Beispiel eines Ausschnitts der Business Architekturen von ArchiMate und TOGAF eine relevante methodische Basis für die Integration auch größerer Lösungskonzepte und ordnet diese zu einer konsistenten und ausbaubaren Grundlage für leistungsstarke EA-Referenzarchitekturen. Unsere innovative Idee der Zusammenführung teils heterogener Architekturkonzepte auf der Basis von EA-Capability-Maps, Metamodellen, Standards, Frameworks und Serviceorientierten Ontologien basiert auf eigens entwickelten und bereits erprobten Ansätzen mit Korrelationsmatrizen, weiterentwickelten EA-Metamodellen und auf unserem bisherigen integralen ESARC-Enterprise Services Architecture Reference Cube mit zugehörigen Ontologien, Reifegradmodellen und Patterns für EAM- Diagnostik und systematische Verbesserungen der Architektur.
- TextdokumentOpen Integration of Digital Architecture Models for Micro-granular Systems and Services(Digital Enterprise Computing (DEC 2017), 2017) Zimmermann, Alfred; Schmidt, Rainer; Sandkuhl, Kurt; Jugel, Dierk; Bogner, Justus; Möhring, MichaelThe digital transformation of our society changes the way we live, work, learn, communicate, and collaborate. This disruptive change drive current and next information processes and systems that are important business enablers for the context of digitization since years. Our aim is to support flexibility and agile transformations for both business domains and related information technology with more flexible enterprise information systems through adaptation and evolution of digital architectures. The present research paper investigates the continuous bottom-up integration of micro-granular architectures for a huge amount of dynamically growing systems and services, like Microservices and the Internet of Things, as part of a new composed digital architecture. To integrate micro-granular architecture models into living architectural model versions we are extending enterprise architecture reference models by state of art elements for agile architectural engineering to support digital products, services, and processes.
- KonferenzbeitragProviding EA decision support for stakeholders by automated analyses(Digital Enterprise Computing (DEC 2015), 2015) Jugel, Dierk; Kehrer, Stefan; Schweda, Christian M.; Zimmermann, AlfredEnterprise architecture management (EAM) is a holistic approach to tackle the complex Business and IT architecture. The transformation of an organization's EA towards a strategyoriented system is a continuous task. Many stakeholders have to elaborate on various parts of the EA to reach the best decisions to shape the EA towards an optimized support of the organizations' capabilities. Since the real world is too complex, analyzing techniques are needed to detect optimization potentials and to get all information needed about an issue. In practice visualizations are commonly used to analyze EAs. However these visualizations are mostly static and do not provide analyses. In this article we combine analyzing techniques from literature and interactive visualizations to support stakeholders in EA decision-making.