Auflistung nach Autor:in "Lerche, Lukas"
1 - 3 von 3
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragImplizites Feedback in Empfehlungssystemen: 1 Eigenschaften, Anwendungen und Herausforderungen(Ausgezeichnete Informatikdissertationen 2016, 2017) Lerche, LukasEmpfehlungssysteme (engl. recommender systems) werden zur Vermeidung der Informationsüberflutung auf digitalen Plattformen eingesetzt, indem sie Nutzern helfen, relevante Artikel aus einer unüberschaubaren Menge zu identifizieren. Die Erzeugung solch personalisierter Empfehlungen erfolgt auf Basis von Nutzerfeedback. In dieser Arbeit wird sogenanntes implizites Feed- back untersucht, typische Anwendungsszenarien beschrieben und aktuelle algorithmische Ansätze vorgestellt. Im Detail werden (i) ein neuartiger “learning-to-rank”-Algorithmus eingeführt, der verschiedene Granularitäten von implizitem Feedback differenzieren kann, (ii) kontextualisierte Empfehlungstechniken für die E-Commerce-Domäne präsentiert, welche Empfehlungen an die kurzfristigen Ziele der Nutzer anpassen können, (iii) intelligente Erinnerungsempfehlungen zur Wiederentdeckung von bekannten Artikeln vorgeschlagen, und (iv) eine tiefgreifende Analyse verschiedener Empfehlungsalgorithmen hinsichtlich ihres Popularitätsbias (engl. popularity bias) durchgeführt und Gegenmaßnahmen gezeigt, die dieser Tendenz effektiv entgegenwirken können.
- KonferenzbeitragItem Familiarity as a Possible Confounding Factor in User-Centric Recommender Systems Evaluation(i-com: Vol. 14, No. 1, 2015) Jannach, Dietmar; Lerche, Lukas; Jugovac, MichaelUser studies play an important role in academic research in the field of recommender systems as they allow us to assess quality factors other than the predictive accuracy of the underlying algorithms. User satisfaction is one such factor that is often evaluated in laboratory settings and in many experimental designs one task of the participants is to assess the suitability of the system-generated recommendations. The effort required by the user to make such an assessment can, however, depend on the user’s familiarity with the presented items and directly impact on the reported user satisfaction. In this paper, we report the results of a preliminary recommender systems user study using Mechanical Turk, which indicates that item familiarity is strongly correlated with overall satisfaction.
- ZeitschriftenartikelPerspektiven in der Offline-Evaluation von Empfehlungsalgorithmen(HMD Praxis der Wirtschaftsinformatik: Vol. 50, No. 5, 2013) Jannach, Dietmar; Lerche, LukasenEmpfehlungssysteme sind heutzutage ein zentraler Bestandteil vieler Onlineshops und stellen für die Betreiber ein wertvolles Mittel dar, Kunden bei der Produktoder Informationssuche zu helfen sowie auf weitere interessante Produkte hinzuweisen. Die meisten Forschungsarbeiten zu Empfehlungssystemen verwenden explizite Produktbewertungen von Kunden als Eingabe für die Algorithmen und als Grundlage für die Empfehlungsgenerierung. In der Realität sind solche Bewertungen jedoch oft nicht in ausreichender Menge vorhanden, sodass für die Produktvorschläge auf andere Datenquellen — wie zum Beispiel Logdaten der Kundenaktionen — zurückgegriffen werden muss. In diesem Beitrag werden praktische Herausforderungen bei der Nutzung und Interpretation solcher weiteren Datenquellen für die Empfehlungsgenerierung besprochen sowie auf methodische Fragen der vergleichenden Bewertung von Empfehlungsalgorithmen eingegangen.