Auflistung nach Autor:in "Manuel Geil, Jan-Henrik Helmig"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragAutomatisierte Unterscheidung von Feldarbeit und Straßenfahrt für Landmaschinen mit Hilfe von unüberwachten KI-Methoden(44. GIL - Jahrestagung, Biodiversität fördern durch digitale Landwirtschaft, 2024) Manuel Geil, Jan-Henrik HelmigManuel Geil, Jan-Henrik Helmig1, Julian Jour1, Bodo Mistele1, Jens Peters1, Katharina Stahl1 und Andreas Wübbeke1 Abstract: Die Dokumentation von Daten in der Agrarwirtschaft erweist sich für Landwirte als zunehmend aufwändige Tätigkeit, welche meist immer noch manuell erfolgt. Ziel unserer Forschungsarbeit ist es, Maschinendaten zu nutzen, um zwischen Feldarbeit und Straßenfahrt automatisch zu klassifizieren. Die Maschinendaten werden als kontinuierlicher Strom vom Maschinenstart bis zum Ausschalten der Maschine übermittelt und können Daten aus unterschiedlichen Tätigkeiten enthalten. Um ein manuelles Labeling als auch Erfassen der Feldgrenzen zu vermeiden, wird ein Ansatz verfolgt, mittels eines dichtebasierten Clustering-Verfahrens die Daten zu klassifizieren. Dieses Verfahren schien aufgrund der Dichte der Datenpunkte auf den Schlägen als vielversprechend. Im weiteren Verlauf konnte die Methode durch das Hinzuziehen der Fahrtgeschwindigkeit und das Bilden konvexer Hüllen weiter verbessert werden.
- KonferenzbeitragTransformation von Maschinendaten als Eingabe für maschinelle Lernverfahren zur Klassifikation von landwirtschaftlichen Arbeitsgängen(44. GIL - Jahrestagung, Biodiversität fördern durch digitale Landwirtschaft, 2024) Manuel Geil, Jan-Henrik HelmigLandwirte dokumentieren heutzutage noch immer häufig ihre Tätigkeiten auf Schlägen manuell, was eine aufwändige und fehleranfällige Tätigkeit darstellt. Dies wird zunehmend belastend, da die Dokumentationspflichten für Landwirte umfangreicher werden. In diesem Beitrag wurden bereits aufgenommene Maschinendaten zur Klassifikation von Maschinentätigkeiten analysiert und basierend darauf transformiert. Der daraus resultierende reduzierte Datensatz diente als Eingabe für maschinelle Lernverfahren zur Klassifikation von landwirtschaftlichen Tätigkeiten. Die Klassifikationsgenauigkeit der überprüften Verfahren lag bei über 93 %. Unter Einbezug von Daten einer fremden Landmaschine, mit denen die ML-Modelle vorher nicht trainiert wurden, war der Random Forest das Lernverfahren mit der höchsten Klassifikationsgenauigkeit. Die Ergebnisse dieser Arbeit zeigen, dass Klassifikationsmodelle maschineller Lernverfahren mit trans-formierten und reduzierten Maschinendaten Klassifikationsergebnisse zur automatisierten Tätigkeitsdokumentation liefern können.