Auflistung nach Autor:in "Mehdiyev, Nijat"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- ZeitschriftenartikelA Novel Business Process Prediction Model Using a Deep Learning Method(Business & Information Systems Engineering: Vol. 62, No. 2, 2020) Mehdiyev, Nijat; Evermann, Joerg; Fettke, PeterThe ability to proactively monitor business processes is a main competitive differentiator for firms. Process execution logs generated by process aware information systems help to make process specific predictions for enabling a proactive situational awareness. The goal of the proposed approach is to predict the next process event from the completed activities of the running process instance, based on the execution log data from previously completed process instances. By predicting process events, companies can initiate timely interventions to address undesired deviations from the desired workflow. The paper proposes a multi-stage deep learning approach that formulates the next event prediction problem as a classification problem. Following a feature pre-processing stage with n-grams and feature hashing, a deep learning model consisting of an unsupervised pre-training component with stacked autoencoders and a supervised fine-tuning component is applied. Experiments on a variety of business process log datasets show that the multi-stage deep learning approach provides promising results. The study also compared the results to existing deep recurrent neural networks and conventional classification approaches. Furthermore, the paper addresses the identification of suitable hyperparameters for the proposed approach, and the handling of the imbalanced nature of business process event datasets.
- ZeitschriftenartikelTowards Explainable Process Predictions for Industry 4.0 in the DFKI-Smart-Lego-Factory(KI - Künstliche Intelligenz: Vol. 33, No. 2, 2019) Rehse, Jana-Rebecca; Mehdiyev, Nijat; Fettke, PeterWith the advent of digitization on the shopfloor and the developments of Industry 4.0, companies are faced with opportunities and challenges alike. This can be illustrated by the example of AI-based process predictions, which can be valuable for real-time process management in a smart factory. However, to constructively collaborate with such a prediction, users need to establish confidence in its decisions. Explainable artificial intelligence (XAI) has emerged as a new research area to enable humans to understand, trust, and manage the AI they work with. In this contribution, we illustrate the opportunities and challenges of process predictions and XAI for Industry 4.0 with the DFKI-Smart-Lego-Factory. This fully automated factory prototype built out of LEGO $$^\circledR$$ ® bricks demonstrates the potentials of Industry 4.0 in an innovative, yet easily accessible way. It includes a showcase that predicts likely process outcomes and uses state-of-the-art XAI techniques to explain them to its workers and visitors.