Auflistung nach Autor:in "Risch, Julian"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- ZeitschriftenartikelMeasuring and Facilitating Data Repeatability in Web Science(Datenbank-Spektrum: Vol. 19, No. 2, 2019) Risch, Julian; Krestel, RalfAccessible and reusable datasets are a necessity to accomplish repeatable research. This requirement poses a problem particularly for web science, since scraped data comes in various formats and can change due to the dynamic character of the web. Further, usage of web data is typically restricted by copyright-protection or privacy regulations, which hinder publication of datasets. To alleviate these problems and reach what we define as “partial data repeatability”, we present a process that consists of multiple components. Researchers need to distribute only a scraper and not the data itself to comply with legal limitations. If a dataset is re-scraped for repeatability after some time, the integrity of different versions can be checked based on fingerprints. Moreover, fingerprints are sufficient to identify what parts of the data have changed and how much. We evaluate an implementation of this process with a dataset of 250 million online comments collected from five different news discussion platforms. We re-scraped the dataset after pausing for one year and show that less than ten percent of the data has actually changed. These experiments demonstrate that providing a scraper and fingerprints enables recreating a dataset and supports the repeatability of web science experiments.
- TextdokumentReal or Fake? Large-Scale Validation of Identity Leaks(INFORMATIK 2017, 2017) Maschler, Fabian; Niephaus, Fabio; Risch, JulianOn the Internet, criminal hackers frequently leak identity data on a massive scale. Subsequent criminal activities, such as identity theft and misuse, put Internet users at risk. Leak checker services enable users to check whether their personal data has been made public. However, automatic crawling and identification of leak data is error-prone for different reasons. Based on a dataset of more than 180 million leaked identity records, we propose a software system that identifies and validates identity leaks to improve leak checker services. Furthermore, we present a proficient assessment of leak data quality and typical characteristics that distinguish valid and invalid leaks.