Auflistung nach Autor:in "Thielert, Bonito"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragDrohnenbasiertes Verfahren zur Detektion geschädigter Obstbäume in Obstbaumplantagen(INFORMATIK 2023 - Designing Futures: Zukünfte gestalten, 2023) Thielert, Bonito; Menz, Patrick; Warnemünde, Sebastian; Holstein, Katharina; Klein, Lauritz; Kilias, David; Runne, Miriam; Jarausch, Wolfgang; Knauer, UwePhytoplasmen-induzierte Erkrankungen von Obstbäumen stellen eine große Herausforderung im europäischen Obstanbau dar. Apfeltriebsucht und Birnenverfall zählen zu den wirtschaftlich relevantesten Obstkrankheiten. Im Rahmen des Projekts „Digitaler Obstbau“ wurden verschiedene Technologien zur Diagnose der Krankheiten untersucht und weiterentwickelt. Die drohnenbasierte Bonitur der genannten Krankheiten ermöglicht die flächendeckende räumlich hochauflösende Erfassung von Plantagen und die Symptomerkennung für einzelne Obstbäume. Untersuchungen mit der Hyperspektralkamera Cubert UHD-185 Firefly und dem integrierten Phantom 4 Multispectral Aufnahmesystem zeigen die Durchführbarkeit der drohnenbasierten digitalen Bonitur. Die Daten zeigen mit 76 % eine gute Klassifikationsrate zur Erkennbarkeit der Krankheitssymptome.
- KonferenzbeitragPhenoTruckAI: On-Site Hyperspectral Measurement for Distinction of Quarantine Grapevine Disease “flavescence dorée” and non-Quarantine Disease “bois noir” in a Mobile Laboratory(INFORMATIK 2024, 2024) Thielert, Bonito; Menz, Patrick; Götte, Gesa; Runne, Miriam; Michel, Markus; Wagner, Sylvia; Jarausch, Wolfgang; Warnemünde, SebastianGerman wine growing regions are threatened by the expected occurrence of the quarantine phytoplasma disease “flavescence dorée (FD)”. As a fast and reliable extension for FD monitoring in the field, hyperspectral imaging using machine learning (ML) based data processing has been assessed for its potential to detect FD and to distinguish it from the less damaging phytoplasma disease “bois noir (BN)”. As FD is not yet present in Germany, the study has been conducted in Northern Italy in a mobile lab. The best models reached a high phytoplasma detection accuracy of 94.9% and 97.8% for the visible to near-infrared (VNIR) and the short-wavelength spectral range (SWIR), respectively. The distinction accuracy to BN reached 79.9% (VNIR) and 79.3% (SWIR). Both, the practicability performing hyperspectral measurements in a sovereign mobile lab and the applicability of hyperspectral sensor systems using ML for detection and distinction of FD and BN phytoplasmas has been shown.