Auflistung nach Autor:in "Wutke, Martin"
1 - 3 von 3
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragAutomatische Unterscheidung von Verhaltensmustern bei Schweinen auf der Basis von Anomalieerkennung durch ein neuronales Konvolutionsnetzwerk(40. GIL-Jahrestagung, Digitalisierung für Mensch, Umwelt und Tier, 2020) Wutke, Martin; Gültas, Mehmet; Traulsen, Imke; Schmitt, Armin O.Die automatisierte Erfassung und Klassifizierung spezifischer Verhaltensmuster von Hausschweinen ermöglicht die Untersuchung unterschiedlicher Einflussfaktoren in den Haltungsbedingungen. Vor allem die Analyse von Videoaufnahmen von Tieren stellt bestehende Ansätze vor Herausforderungen, da die beobachtbaren Verhaltensmuster keiner bestimmbaren Verteilung zu folgen scheinen. Die präsentierte Methode verwendet einen Machine-Learning-Algorithmus, um das Aktivitätsniveau verschiedener Schweinegruppen auf Basis von Videoaufnahmen zu bestimmen. In einem ersten Schritt wird ein neuronales Netzwerk darauf trainiert, Anomalien in Form von unerwarteten Aktivitäten in den Videodateien zu detektieren. Anhand der erzielten Ergebnisse wird in einem zweiten Schritt ein Klassifizierungsalgorithmus entwickelt, wodurch ein standardisierter Vergleich unterschiedlicher Videosequenzen ermöglicht wird.
- KonferenzbeitragEntwicklung eines automatischen Monitoringsystems für die Geburtsüberwachung bei Sauen(43. GIL-Jahrestagung, Resiliente Agri-Food-Systeme, 2023) Wutke, Martin; Lensches, Clara; Witte, Jan-Hendrik; Gerberding, Johann; Lieboldt, Marc-Alexander; Traulsen, ImkeDie Überwachung des Abferkelungsverlaufs ist in der Schweinehaltung von großer Bedeutung, um auftretende Geburtsstörungen frühzeitig erkennen und geeignete Maßnahmen ergreifen zu können. Da eine zeitnahe Geburtserkennung und -betreuung aufgrund intensivierter Haltungsbedingungen oftmals nur schwer zu erzielen ist, war das Ziel der vorliegenden Studie, die Eignung neuronaler Netzwerke zur automatischen Identifikation des Geburtsmomentes zu untersuchen. Anhand einer YoloV5-Netzwerkarchitektur bestimmten wir auf Basis der Detektion unterschiedlicher Körperteile der Muttersau den potentiellen Geburtsbereich innerhalb der Abferkelbucht und identifizierten den Moment der Geburt des ersten Ferkels anhand der Objektdetektion des Ferkels innerhalb des Zielbereichs. Wir validierten unser Analysemodell durch zweistufigen Ansatz und erreichten einen Precision-, Recall- und MAP-Wert von 0.982, 0.989 und 0.993 im Rahmen der Objektdetektion sowie einen Accuracy-, Recall- und Precision-Wert von 0.9, 0.8 und 1 bei der Bestimmung des Geburtszeitpunktes.
- KonferenzbeitragImplementierung eines Noisy-Student-Ansatzes zur Verbesserung der automatischen Detektionsleistung bei Ferkeln(44. GIL - Jahrestagung, Biodiversität fördern durch digitale Landwirtschaft, 2024) Wutke, Martin; Holzhauer, Anne; Hartmann, Ulrich; Lieboldt, Marc-Alexander; Traulsen, ImkeDie Verwendung überwachter Lernalgorithmen aus dem Bereich der künstlichen Intelligenz hält vermehrt Einzug im wissenschaftlichen Alltag. Vor allem die Nutzung von Kameratechnologie und Objekterkennung zeigt großes Potenzial im ethologischen Kontext. Da der Prozess der Datenannotation einen Großteil der zeitlichen und kostenbezogenen Ressourcen vereinnahmt, werden langfristig innovative Trainingsansätze notwendig. Die vorliegende Studie beschreibt diesbezüglich einen semi-überwachten Noisy-Student-Ansatz zur automatischen Datengenerierung und Verbesserung der Objektdetektion am Beispiel neugeborener Ferkel. Im Rahmen eines zweistufen Modellansatzes wird ein auf händisch annotierten Daten trainiertes Lehrermodell zur Erzeugung von Pseudo-Annotationen und zum Training eines Schülermodells verwendet. Im Ergebnis kann auf diese Weise eine Verbesserung der Detektionsleistung mit einem Recall-Wert von 0,453 auf 0,707 und einem mAP0.5-Wert von 0,773 auf 0,839 erzielt werden. Die Ergebnisse dieser Studie werden im weiteren Projektverlauf zur Untersuchung des Abferkelprozesses und der Bestimmung kritischer Informationen zum Geburtsverlauf beitragen.