Auflistung nach Autor:in "Zehlike, Meike"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragFairness in Rankings(Ausgezeichnete Informatikdissertationen 2022 (Band D23), 2023) Zehlike, MeikeKünstliche Intelligenz und selbstlernende Systeme spielen eine immer größer werdende Rolle in unserem Alltag. Rankings stellen dabei das wesentliche Instrument unserer Onlinesuche nach Inhalten, Produkten, Freizeitaktivitäten und relevanten Personen dar. Die Reihenfolge der Suchergebnisse bestimmt somit nicht nur die Zufriedenheit der Suchenden, sondern auch die Chancen der Sortierten auf Bildung, ökonomischen und sogar sozialen Erfolg. Diskriminierende Rankings erzeugen nicht nur unmittelbare Nachteile, sondern führen auch zu nachteil-verstärkenden Feedbackschleifen. Die vorliegende Arbeit adressiert drei wichtige Herausforderungen, die im Kontext algorithmischer Diskriminierung durch Ranking-Systeme auftreten: Die ethischen Ziele verschiedener Ranking-Situationen müssen mit denjenigen übereinstimmen, die in Ranking-Algorithmen implizit kodiert sind. Zweitens müssen ethische Wertesysteme in Mathematik und Algorithmen zu übersetzt werden, um Ranking-Algorithmen zur Vermeidung von Diskriminierung bereitzustellen. Drittens sollten diese Methoden einem breiten Publikum zugänglich sein, das sowohl Programmiererinnen, als auch Juristinnen und Politikerinnen umfasst.
- TextdokumentTowards a Flexible Framework for Algorithmic Fairness(INFORMATIK 2020, 2021) Hacker, Philipp; Wiedemann, Emil; Zehlike, MeikeIncreasingly, scholars seek to integrate legal and technological insights to combat bias in AI systems. In recent years, many different definitions for ensuring non-discrimination in algorithmic decision systems have been put forward. In this paper, we first briefly describe the EU law framework covering cases of algorithmic discrimination. Second, we present an algorithm that harnesses optimal transport to provide a flexible framework to interpolate between different fairness definitions. Third, we show that important normative and legal challenges remain for the implementation of algorithmic fairness interventions in real-world scenarios. Overall, the paper seeks to contribute to the quest for flexible technical frameworks that can be adapted to varying legal and normative fairness constraints.