Auflistung nach Autor:in "Zeinstra, Chris"
1 - 3 von 3
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragDiscriminating power of FISWG characteristic descriptors under different forensic use case(Biosig 2016, 2016) Zeinstra, Chris; Veldhuis, Raymond; Sreeuwers, Luuk
- KonferenzbeitragFEERCI: A Package for Fast Non-Parametric Confidence Intervals for Equal Error Rates in Amortized O(m log n)(BIOSIG 2018 - Proceedings of the 17th International Conference of the Biometrics Special Interest Group, 2018) Haasnoot, Erwin; Khodabakhsh, Ali; Zeinstra, Chris; Spreeuwers, Luuk; Veldhuis, RaymondEqual Error Rates (EERs), or other weighted relations between False Match and Non- Match Rates (FMR/FNMR), are often used as a performance metric for biometric systems. Confidence Intervals (CIs) are used to denote the uncertainty underlying these EERs, with many methods existing to estimate said CIs in both parametric and non-parametric ways. These confidence intervals provide, foremost, a method of comparing scoring/ranking functions. Non-parametric methods often suffer from high computational costs, but do not make assumptions as to the shape of the EERand score distributions. For both EERs and CIs, contemporary open-source toolkits leave room for improvement in terms of computational efficiency. In this paper, we introduce the Fast EER (FEER) algorithm that calculates an EER in O(logn) on a sorted score list, we show how to adapt the FEER algorithm to calculate non-parametric, bootstrapped EER CIs (FEERCI) in O(mlogn) given m resamplings, and we introduce an opinionated open-source package named feerci that provides implementations of the FEER and FEERCI algorithm.We provide speed and accuracy benchmarks for the feerci package, comparing it against the most-used methods of calculating EERs in Python and show how it is able to calculate EERs and CIs on very large score lists faster than contemporary toolkits can calculate a single EER.
- KonferenzbeitragShallow CNNs for the Reliable Detection of Facial Marks(BIOSIG 2018 - Proceedings of the 17th International Conference of the Biometrics Special Interest Group, 2018) Zeinstra, Chris; Haasnoot, ErwinFacial marks are local irregularities of skin texture. Their type and/or spatial pattern can be used as a (soft) biometric modality in several applications. A key requirement for a biometric system that utilises facial marks is their reliable detection. Detection methods typically use a blob detector followed by heuristic post processing steps to reduce the number of false positives. In this paper, we consider shallow Convolutional Neural Networks (CNNs) for facial mark detection. The choice of this network type seems natural as it learns multiple (non) blob detectors; shallow refers to the fact that we only consider CNNs up to three layers.We show that (a) these CNNs successfully address the false positive problem, (b) remove the need for post processing steps, and (c) outperform a classic blob detector, approaches taken in previous studies and some other non CNN type classifiers in terms of EER and FMR at TMR=0.95.