Auflistung HMD 53(4) - August 2016 - NoSQL-Anwendungen nach Schlagwort "Big Data"
1 - 3 von 3
Treffer pro Seite
Sortieroptionen
- ZeitschriftenartikelDas aufstrebende Berufsbild des Data Scientist(HMD Praxis der Wirtschaftsinformatik: Vol. 53, No. 4, 2016) Schumann, Conny; Zschech, Patrick; Hilbert, AndreasUm die Vielzahl an heterogenen Datenströmen im Zeitalter von Big Data in für Unternehmen entscheidungsrelevante Informationen zu transformieren, wurden in den letzten Jahren nicht nur Business-Analytics-Ansätze entwickelt. Auch ein neues Berufsbild wurde Mittelpunkt zahlreicher Diskussionen: der Data Scientist. Die Vielzahl an Kompetenzen, die diese neue Berufsgruppe mit sich bringen sollte, wurde in verschiedenen Fachbeiträgen beschrieben und wird in diesem Artikel durch ein systematisches Literature Review zusammengefasst. Dabei werden die einzelnen, durch die Inhaltsanalyse ermittelten Kompetenzen nicht nur aufgezählt, sondern erstmalig in ein Kompetenzmodell eingeordnet. Der Data Scientist sollte zahlreiche Fachkompetenzen, wie Kenntnisse in Statistik oder den KDD-Prozess betreffende Kompetenzen zur Datenselektion-, -aufbereitung, -analyse und Interpretation, aber auch Sozialkompetenzen, wie Team- und Kommunikationsfähigkeit, sowie Selbstkompetenzen, wie Neugier oder Kreativität, mit sich bringen. Hierbei wird ersichtlich, dass ein Data Scientist allein nicht alle Kompetenzen erfüllen kann. Es bedarf vielmehr an die Aufgaben und Rollen im Unternehmen angepasste Typen von Data Scientists mit unterschiedlichen Kompetenzschwerpunkten. Folglich werden ausgehend von den Erkenntnissen der Literatur- und Inhaltsanalyse Handlungsempfehlungen zur Entwicklung von spezifischeren Anforderungsprofilen ausgesprochen.AbstractTo transform the variety of heterogeneous data streams into enterprise decision-relevant information, not just modern business analytics approaches have been developed in recent years. In addition, a new job profile called for attention within the rising era of Big Data: the Data Scientist. The variety of skills that come along with this new profession has been described in various technical papers and is now summarized in this article through a systematic literature review. For this purpose, the identified competences are not only enumerated, but also classified within a competency model using a content analysis. The result of this examination is that according to the literature a Data Scientist should provide an extensive skill set – including professional skills such as statistics or KDD-relevant skills for the selection, preprocessing, analysis and interpretation of data, but also social skills such as teamwork and communication, as well as personal skills such as curiosity or creativity. Here it becomes evident that a Data Scientist alone cannot meet all these competencies. Rather, it requires individual types of Data Scientists with different major focus depending on the roles and duties within the enterprise. For this purpose the article provides recommendations for the development of specific Data Scientist profiles based on the results of the literature and content analysis.
- ZeitschriftenartikelEinflüsse auf den Implementierungserfolg von NoSQL-Systemen: Erkenntnisse einer quantitativ-empirischen Untersuchung(HMD Praxis der Wirtschaftsinformatik: Vol. 53, No. 4, 2016) Cato, Patrick; Brumm, Simon; Gölzer, Philipp; Demmelhuber, WalterNoSQL-Systeme sind eine neue Generation von Datenbanksystemen, mit denen sich eine Reihe von neuen und innovativen Anwendungsfällen realisieren lässt. Erfahrungsberichte von Praktikern zeigen jedoch, dass die Implementierung von NoSQL-Systemen in der Praxis oftmals komplexitätsbedingt scheitert. Ziel der Studie des Instituts für Wirtschaftsinformatik Nürnberg war es daher, die zentralen Einflussgrößen auf den Implementierungserfolg zu erfassen und empirisch zu validieren. Acht Faktoren haben einen signifikanten Einfluss auf den Implementierungserfolg von NoSQL-Systemen: ausreichende Ressourcenausstattung des Projekts, datengetriebene Entscheidungskultur im Unternehmen, Datenqualität der Quellsysteme, Managementunterstützung, Data Science Fähigkeiten, Laboransatz zur Exploration des Anwendungsfalls, adäquate Technologiewahl sowie Berücksichtigung von datenschutzrechtlichen Aspekten in der Designphase (Privacy by Design).AbstractNoSQL systems are a new generation of data base systems that enable the implementation of new and innovative use cases. However, experience reports from practitioners show that the implementation of NoSQL systems is a complex undertaking and many NoSQL projects fail. This paper summarizes the key results of a study that investigated the central factors that have an impact on the implementation success of NoSQL systems. The study has identified eight factors that have a significant impact: Sufficient resources, data-driven culture, data quality of the sourcing systems, management support, data science skills, proof-of-concept phase, adequate technology selection and privacy by design.
- ZeitschriftenartikelZur Nutzung von SQL- und NoSQL-Technologien(HMD Praxis der Wirtschaftsinformatik: Vol. 53, No. 4, 2016) Meier, AndreasWebbasierte Anwendungen setzen für unterschiedliche Dienstleistungen adäquate Datenhaltungssysteme ein. Die Nutzung einer einzigen Datenbanktechnologie genügt nicht mehr. In diesem Überblicksbeitrag wird der Begriff Big Data erläutert, bevor die Potenziale von SQL- und NoSQL-Technologien einander gegenübergestellt werden. Nach der Vorstellung der wichtigsten NoSQL-Ansätze und entsprechender Anwendungsoptionen werden organisatorische Maßnahmen für das Unternehmen im Zeitalter des Big Data aufgezeigt.AbstractWeb-based applications need adequate database concepts for their services. Working with a single database technology doesn’t help anymore. This overview explains the term Big Data and compares the potentials of SQL- and NoSQL-technologies. It explains NoSQL principles and appliation options before organizational issues will be proposed for the era of Big Data.