Auflistung nach Schlagwort "Automated Reasoning"
1 - 3 von 3
Treffer pro Seite
Sortieroptionen
- ZeitschriftenartikelHigher-order theorem proving and its applications(it - Information Technology: Vol. 61, No. 4, 2019) Steen, AlexanderAutomated theorem proving systems validate or refute whether a conjecture is a logical consequence of a given set of assumptions. Higher-order provers have been successfully applied in academic and industrial applications, such as planning, software and hardware verification, or knowledge-based systems. Recent studies moreover suggest that automation of higher-order logic, in particular, yields effective means for reasoning within expressive non-classical logics, enabling a whole new range of applications, including computer-assisted formal analysis of arguments in metaphysics. My work focuses on the theoretical foundations, effective implementation and practical application of higher-order theorem proving systems. This article briefly introduces higher-order reasoning in general and presents an overview of the design and implementation of the higher-order theorem prover Leo-III. In the second part, some example applications of Leo-III are discussed.
- KonferenzbeitragTseitin or not Tseitin? The Impact of CNF Transformations on Feature-Model Analyses(Software Engineering 2023, 2023) Kuiter, Elias; Krieter, Sebastian; Sundermann, Chico; Thüm, Thomas; Saake, GunterThis work was published at the 37th IEEE/ACM International Conference on Automated Software Engineering (ASE) 2022 [Ku22]. Feature modeling is widely used to systematically model features of variant-rich software systems and their dependencies. By translating feature models into propositional formulas and analyzing them with solvers, a wide range of automated analyses across all phases of the software development process become possible. Most solvers only accept formulas in conjunctive normal form (CNF), so an additional transformation of feature models is often necessary. However, it is unclear whether this transformation has a noticeable impact on analyses. We compare three transformations for bringing feature-model formulas into CNF. We analyze which transformation can be used to correctly perform feature-model analyses and evaluate three CNF transformation tools on a corpus of 22 real-world feature models. Our empirical evaluation illustrates that some CNF transformations do not scale to complex feature models or even lead to wrong results for model-counting analyses. Further, the choice of the CNF transformation can substantially influence the performance of subsequent analyses.
- WorkshopbeitragUnderstanding Parameters of Deductive Verification: An Empirical Investigation of KeY(Software Engineering and Software Management 2019, 2019) Knüppel, Alexander; Thüm, Thomas; Pardylla, Carsten Immanuel; Schaefer, InaAs formal verification of software systems is a complex task comprising many algorithms and heuristics, modern theorem provers offer numerous parameters that are to be selected by a user to control how a piece of software is verified. Evidently, the number of parameters even increases with each new release. One challenge is that default parameters are often insufficient to close proofs automatically and are not optimal in terms of verification effort. The verification phase becomes hardly accessible for non-experts, who typically must follow a time-consuming trial-and-error strategy to choose the right parameters even for trivial pieces of software. To aid users of deductive verification, we apply machine learning techniques to empirically investigate which parameters and combinations thereof impair or improve provability and verification effort. We exemplify our procedure on the deductive verification system KeY 2.6.1 and specified extracts of OpenJDK, and formulate 53 hypotheses of which only three have been rejected. We identified parameters that represent a trade-off between high provability and low verification effort, enabling the possibility to prioritize the selection of a parameter for either direction. Our insights give tool builders a better understanding of their control parameters and constitute a stepping stone towards automated deductive verification and better applicability of verification tools for non-experts.