Auflistung nach Schlagwort "Causality"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- ZeitschriftenartikelThe Data Mining Group at University of Vienna(Datenbank-Spektrum: Vol. 20, No. 1, 2020) Altinigneli, Can; Bauer, Lena Greta Marie; Behzadi, Sahar; Fritze, Robert; Hlaváčková-Schindler, Kateřina; Leodolter, Maximilian; Miklautz, Lukas; Perdacher, Martin; Sadikaj, Ylli; Schelling, Benjamin; Plant, ClaudiaHow can we extract meaningful knowledge from massive amounts of data? The data mining group at University of Vienna contributes novel methods for exploratory data analysis. Our main research focus is on unsupervised learning, where we want to identify any kind of non-random structure or patterns in the data without restricting ourselves to a pre-defined target variable or analysis goal. Our major lines of current research are clustering, causality detection and highly efficient exploratory data analysis on massive data. Besides that, we develop application-specific methods addressing specific challenges in biomedicine, neuroscience and environmental sciences. In teaching, we offer fundamental and advanced courses in data mining, machine learning and scientific data management for Bachelor and Master students of computer science and related programs.
- ZeitschriftenartikelTowards Strong AI(KI - Künstliche Intelligenz: Vol. 35, No. 1, 2021) Butz, Martin V.Strong AI—artificial intelligence that is in all respects at least as intelligent as humans—is still out of reach. Current AI lacks common sense, that is, it is not able to infer, understand, or explain the hidden processes, forces, and causes behind data. Main stream machine learning research on deep artificial neural networks (ANNs) may even be characterized as being behavioristic. In contrast, various sources of evidence from cognitive science suggest that human brains engage in the active development of compositional generative predictive models (CGPMs) from their self-generated sensorimotor experiences. Guided by evolutionarily-shaped inductive learning and information processing biases, they exhibit the tendency to organize the gathered experiences into event-predictive encodings. Meanwhile, they infer and optimize behavior and attention by means of both epistemic- and homeostasis-oriented drives. I argue that AI research should set a stronger focus on learning CGPMs of the hidden causes that lead to the registered observations. Endowed with suitable information-processing biases, AI may develop that will be able to explain the reality it is confronted with, reason about it, and find adaptive solutions, making it Strong AI. Seeing that such Strong AI can be equipped with a mental capacity and computational resources that exceed those of humans, the resulting system may have the potential to guide our knowledge, technology, and policies into sustainable directions. Clearly, though, Strong AI may also be used to manipulate us even more. Thus, it will be on us to put good, far-reaching and long-term, homeostasis-oriented purpose into these machines.