Auflistung nach Schlagwort "Cognitive models"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- ZeitschriftenartikelHuman-Robot Body Experience: An Artificial Intelligence Perspective(KI - Künstliche Intelligenz: Vol. 36, No. 0, 2022) Beckerle, PhilippHuman body experience is remarkably flexible, which enables us to integrate passive tools as well as intelligent robotic devices into our body representation. Accordingly, it can serve as a role model to make (assistive) robots interact seamlessly with their users or to provide (humanoid) robots with a human-like self-perception and behavior generation. This article discusses the potential of understanding human body experience and applying it to robotics. Particular focus is set on how to use artificial intelligence techniques and create intelligent artificial agents from insights about human body experience. The discussion is based on a summary of the author’s habilitation thesis and combines theoretical and experimental perspectives from psychology, cognitive science and neuroscience as well as computer science, engineering, and artificial intelligence. From this, it derives directions for future developments towards creating artificial body intelligence with human-like capabilities.
- ZeitschriftenartikelWhy Machines Don’t (yet) Reason Like People(KI - Künstliche Intelligenz: Vol. 33, No. 3, 2019) Khemlani, Sangeet; Johnson-Laird, P. N.AI has never come to grips with how human beings reason in daily life. Many automated theorem-proving technologies exist, but they cannot serve as a foundation for automated reasoning systems. In this paper, we trace their limitations back to two historical developments in AI: the motivation to establish automated theorem-provers for systems of mathematical logic, and the formulation of nonmonotonic systems of reasoning. We then describe why human reasoning cannot be simulated by current machine reasoning or deep learning methodologies. People can generate inferences on their own instead of just evaluating them. They use strategies and fallible shortcuts when they reason. The discovery of an inconsistency does not result in an explosion of inferences—instead, it often prompts reasoners to abandon a premise. And the connectives they use in natural language have different meanings than those in classical logic. Only recently have cognitive scientists begun to implement automated reasoning systems that reflect these human patterns of reasoning. A key constraint of these recent implementations is that they compute, not proofs or truth values, but possibilities.