Auflistung nach Schlagwort "Concept Drift"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- ZeitschriftenartikelAgnostic Explanation of Model Change based on Feature Importance(KI - Künstliche Intelligenz: Vol. 36, No. 0, 2022) Muschalik, Maximilian; Fumagalli, Fabian; Hammer, Barbara; Hüllermeier, EykeExplainable Artificial Intelligence (XAI) has mainly focused on static learning tasks so far. In this paper, we consider XAI in the context of online learning in dynamic environments, such as learning from real-time data streams, where models are learned incrementally and continuously adapted over the course of time. More specifically, we motivate the problem of explaining model change , i.e. explaining the difference between models before and after adaptation, instead of the models themselves. In this regard, we provide the first efficient model-agnostic approach to dynamically detecting, quantifying, and explaining significant model changes. Our approach is based on an adaptation of the well-known Permutation Feature Importance (PFI) measure. It includes two hyperparameters that control the sensitivity and directly influence explanation frequency, so that a human user can adjust the method to individual requirements and application needs. We assess and validate our method’s efficacy on illustrative synthetic data streams with three popular model classes.
- TextdokumentZuverlässige Verspätungsvorhersagen mithilfe von TAROT(BTW 2019, 2019) Stach, Christoph; Giebler, Corinna; Schmidt, SimoneBei der Einhaltung von Schadstoffwerten nehmen öffentliche Verkehrsmittel eine immer entscheidendere Rolle ein. Daher wird vermehrt darauf geachtet, deren Attraktivität zu erhöhen. Ein wichtiger Punkt hierbei ist die Vorhersagegenauigkeit von Verspätungen zu verbessern, damit Fahrgäste entsprechend planen können. Die aktuell angewandten Ansätze sind häufig ungenau, da sie die zur Verfügung stehenden Daten nicht ausreichend nutzen. In diesem Beitrag stellen wir daher mit TAROT ein System vor, das mittels prädiktiver Analysen die Vorhersagegenauigkeit von Verspätungen verbessert, indem es in den Modellen Verspätungsfortpflanzungen berücksichtigt. Darüber hinaus ist es in der Lage, im Fall einer Störung augenblicklich auf ein besseres Vorhersagemodell umzusteigen und auf sowohl schleichende als auch abrupte Veränderungen automatisch zu reagieren. Die Vorteile dieser Eigenschaften lassen sich in unserem TAROT-Demonstrator anhand von vier repräsentativen Anwendungsszenarien zeigen. Auch wenn sich die gezeigten Szenarien alle auf die Verspätungs-vorhersage von S-Bahnen beziehen, lassen sich die Konzepte von TAROT auch auf viele andere Anwendungsbereiche (z. B. zur Bestimmung von Produktionszeiten in der Industrie 4.0) anwenden.