Auflistung nach Schlagwort "Data profiling"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- ZeitschriftenartikelEnabling data-centric AI through data quality management and data literacy(it - Information Technology: Vol. 64, No. 1-2, 2022) Abedjan, ZiawaschData is being produced at an intractable pace. At the same time, there is an insatiable interest in using such data for use cases that span all imaginable domains, including health, climate, business, and gaming. Beyond the novel socio-technical challenges that surround data-driven innovations, there are still open data processing challenges that impede the usability of data-driven techniques. It is commonly acknowledged that overcoming heterogeneity of data with regard to syntax and semantics to combine various sources for a common goal is a major bottleneck. Furthermore, the quality of such data is always under question as the data science pipelines today are highly ad-hoc and without the necessary care for provenance. Finally, quality criteria that go beyond the syntactical and semantic correctness of individual values but also incorporate population-level constraints, such as equal parity and opportunity with regard to protected groups, play a more and more important role in this process. Traditional research on data integration was focused on post-merger integration of companies, where customer or product databases had to be integrated. While this is often hard enough, today the challenges aggravate because of the fact that more stakeholders are using data analytics tools to derive domain-specific insights. I call this phenomenon the democratization of data science, a process, which is both challenging and necessary. Novel systems need to be user-friendly in a way that not only trained database admins can handle them but also less computer science savvy stakeholders. Thus, our research focuses on scalable example-driven techniques for data preparation and curation. Furthermore, we believe that it is important to educate the breadth of society on implications of a data-driven world and actively promote the concept of data literacy as a fundamental competence.
- TextdokumentReal or Fake? Large-Scale Validation of Identity Leaks(INFORMATIK 2017, 2017) Maschler, Fabian; Niephaus, Fabio; Risch, JulianOn the Internet, criminal hackers frequently leak identity data on a massive scale. Subsequent criminal activities, such as identity theft and misuse, put Internet users at risk. Leak checker services enable users to check whether their personal data has been made public. However, automatic crawling and identification of leak data is error-prone for different reasons. Based on a dataset of more than 180 million leaked identity records, we propose a software system that identifies and validates identity leaks to improve leak checker services. Furthermore, we present a proficient assessment of leak data quality and typical characteristics that distinguish valid and invalid leaks.