Auflistung nach Schlagwort "Data-driven Business Models"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- ZeitschriftenartikelData-based Customer-Retention-as-a-Service: Induktive Entwicklung eines datenbasierten Geschäftsmodells auf Basis einer Fallstudie der Automobilbranche(HMD Praxis der Wirtschaftsinformatik: Vol. 58, No. 3, 2021) Kortum, Henrik; Rebstadt, Jonas; Gravemeier, Laura Sophie; Thomas, OliverViele Unternehmen setzen Künstliche Intelligenz zur Verarbeitung großer Datenmengen bereits heute erfolgreich für die Kundenbindung ein. So schaffen große Unternehmen individuelle Kundenerlebnisse basierend auf der Auswertung großer kundenbezogener Datenmengen zur kurz- aber auch langfristigen Kundenbindung, z. B. durch intelligente Empfehlungen von Inhalten auf Videoplattformen. Bei Unternehmen mit traditioneller Wertschöpfung wird dieses Potenzial jedoch noch nicht ausreichend genutzt. Vor diesem Hintergrund wird im Rahmen einer Fallstudie exemplarisch ein datengetriebenes Kundenbindungsszenario in Kooperation mit einer Autowerkstatt umgesetzt. Im konkreten Fall wurde eine zeitlich optimierte Kundenansprache auf Basis von KI-basierten Prognosen der täglichen Fahrleistung von Kunden angestrebt. Grundlage dafür war die Analyse eines Kundendatensatzes einer Autowerkstatt und die anschließende Entwicklung einer Künstlichen Intelligenz. Aufbauend auf der Fallstudie wird ein datenbasiertes Geschäftsmodell konzipiert, dessen Werteangebot vor allem Unternehmen mit traditioneller Wertschöpfung und wenig Wissen im Bereich Künstlicher Intelligenz dazu befähigt, datenbasierte Technologien in der Kundenbindung einzusetzen. Das dem Geschäftsmodell zugrundeliegende Plattformkonzept wird dabei als Open-Innovation-Modell entwickelt und soll neben der Entwicklung eigener Services auch die Interaktion von Datenkonsumenten, Datenlieferanten und anderen Datenbefähigern, mit dem Ziel sich als Datenökosystem für Kundenbindung zu etablieren, unterstützen. Many companies are already successfully using artificial intelligence (AI) to process large volumes of data for the purpose of customer retention. Large companies create individualized customer experiences and analyze massive amounts of data to achieve customer loyalty through intelligent recommendations, for example. However, companies with traditional value creation, as of yet often fail to sufficiently address this topic. Therefore, this contribution tackles the implementation of an exemplary use case for data-driven customer retention in a car repair shop. In particular, the aim was to optimize the timing of customer communication based on forecasts of the customers’ daily driving behavior. The basis for this analysis was a data set provided by a car repair shop and the subsequent development of a machine learning model. Based on this case study, a business model is developed that enables companies with traditional value creation and little AI-know-how to use data-driven technologies in customer retention. The underlying platform concept is conceptualized as an open innovation model and supports the interaction of data consumers, data providers and data enablers. In this way, the target is not only to develop own services, but also to establish a data ecosystem for customer loyalty.
- KonferenzbeitragHow to promote the spread of data-driven business models by involving all relevant stakeholders? The case of the pay-per-stress model(INFORMATIK 2024, 2024) Carl, K. Valerie; Brîncoveanu, Constantin; Hinz, OliverSustainable practices change businesses in various domains, leveraging digitalization and the according spread of sensor technology and connectivity. In this context, data-driven business models emerge that foster sustainability. Despite the potential benefits of such emerging business models, adoption has been limited. To foster their spread, every affected stakeholder group must benefit. Hence, this study investigates potential incentives to adopt data-driven business models, particularly pay-per-stress, considering all affected stakeholder groups. We examine pay-per-stress in the context of the manufacturing industry, accordingly considering manufacturers, lessors, and lessees. Through semi-structured interviews with 19 experts stemming from those three stakeholder groups, we identify a potential incentive system for enabling more wide-spread adoption. This research contributes to understanding the incentivization of data-driven business models that foster more sustainability by encouraging a use of leased products that enables longer lifespans.